lightning/tests/loggers/test_mlflow.py

187 lines
7.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import MagicMock
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import _MLFLOW_AVAILABLE, MLFlowLogger
from tests.helpers import BoringModel
def mock_mlflow_run_creation(logger, experiment_name=None, experiment_id=None, run_id=None):
""" Helper function to simulate mlflow client creating a new (or existing) experiment. """
run = MagicMock()
run.info.run_id = run_id
logger._mlflow_client.get_experiment_by_name = MagicMock(return_value=experiment_name)
logger._mlflow_client.create_experiment = MagicMock(return_value=experiment_id)
logger._mlflow_client.create_run = MagicMock(return_value=run)
return logger
@mock.patch('pytorch_lightning.loggers.mlflow.mlflow')
@mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient')
def test_mlflow_logger_exists(client, mlflow, tmpdir):
""" Test launching three independent loggers with either same or different experiment name. """
run1 = MagicMock()
run1.info.run_id = "run-id-1"
run2 = MagicMock()
run2.info.run_id = "run-id-2"
run3 = MagicMock()
run3.info.run_id = "run-id-3"
# simulate non-existing experiment creation
client.return_value.get_experiment_by_name = MagicMock(return_value=None)
client.return_value.create_experiment = MagicMock(return_value="exp-id-1") # experiment_id
client.return_value.create_run = MagicMock(return_value=run1)
logger = MLFlowLogger('test', save_dir=tmpdir)
assert logger._experiment_id is None
assert logger._run_id is None
_ = logger.experiment
assert logger.experiment_id == "exp-id-1"
assert logger.run_id == "run-id-1"
assert logger.experiment.create_experiment.asset_called_once()
client.reset_mock(return_value=True)
# simulate existing experiment returns experiment id
exp1 = MagicMock()
exp1.experiment_id = "exp-id-1"
client.return_value.get_experiment_by_name = MagicMock(return_value=exp1)
client.return_value.create_run = MagicMock(return_value=run2)
# same name leads to same experiment id, but different runs get recorded
logger2 = MLFlowLogger('test', save_dir=tmpdir)
assert logger2.experiment_id == logger.experiment_id
assert logger2.run_id == "run-id-2"
assert logger2.experiment.create_experiment.call_count == 0
assert logger2.experiment.create_run.asset_called_once()
client.reset_mock(return_value=True)
# simulate a 3rd experiment with new name
client.return_value.get_experiment_by_name = MagicMock(return_value=None)
client.return_value.create_experiment = MagicMock(return_value="exp-id-3")
client.return_value.create_run = MagicMock(return_value=run3)
# logger with new experiment name causes new experiment id and new run id to be created
logger3 = MLFlowLogger('new', save_dir=tmpdir)
assert logger3.experiment_id == "exp-id-3" != logger.experiment_id
assert logger3.run_id == "run-id-3"
@mock.patch("pytorch_lightning.loggers.mlflow.mlflow")
@mock.patch("pytorch_lightning.loggers.mlflow.MlflowClient")
def test_mlflow_log_dir(client, mlflow, tmpdir):
""" Test that the trainer saves checkpoints in the logger's save dir. """
# simulate experiment creation with mlflow client mock
run = MagicMock()
run.info.run_id = "run-id"
client.return_value.get_experiment_by_name = MagicMock(return_value=None)
client.return_value.create_experiment = MagicMock(return_value="exp-id")
client.return_value.create_run = MagicMock(return_value=run)
# test construction of default log dir path
logger = MLFlowLogger("test", save_dir=tmpdir)
assert logger.save_dir == tmpdir
assert logger.version == "run-id"
assert logger.name == "exp-id"
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
logger=logger,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=3,
)
assert trainer.log_dir == logger.save_dir
trainer.fit(model)
assert trainer.checkpoint_callback.dirpath == (tmpdir / "exp-id" / "run-id" / 'checkpoints')
assert set(os.listdir(trainer.checkpoint_callback.dirpath)) == {'epoch=0-step=0.ckpt'}
assert trainer.log_dir == logger.save_dir
def test_mlflow_logger_dirs_creation(tmpdir):
""" Test that the logger creates the folders and files in the right place. """
if not _MLFLOW_AVAILABLE:
pytest.xfail("test for explicit file creation requires mlflow dependency to be installed.")
assert not os.listdir(tmpdir)
logger = MLFlowLogger('test', save_dir=tmpdir)
assert logger.save_dir == tmpdir
assert set(os.listdir(tmpdir)) == {'.trash'}
run_id = logger.run_id
exp_id = logger.experiment_id
# multiple experiment calls should not lead to new experiment folders
for i in range(2):
_ = logger.experiment
assert set(os.listdir(tmpdir)) == {'.trash', exp_id}
assert set(os.listdir(tmpdir / exp_id)) == {run_id, 'meta.yaml'}
class CustomModel(BoringModel):
def training_epoch_end(self, *args, **kwargs):
super().training_epoch_end(*args, **kwargs)
self.log('epoch', self.current_epoch)
model = CustomModel()
limit_batches = 5
trainer = Trainer(
default_root_dir=tmpdir,
logger=logger,
max_epochs=1,
limit_train_batches=limit_batches,
limit_val_batches=limit_batches,
log_gpu_memory=True,
)
trainer.fit(model)
assert set(os.listdir(tmpdir / exp_id)) == {run_id, 'meta.yaml'}
assert 'epoch' in os.listdir(tmpdir / exp_id / run_id / 'metrics')
assert set(os.listdir(tmpdir / exp_id / run_id / 'params')) == model.hparams.keys()
assert trainer.checkpoint_callback.dirpath == (tmpdir / exp_id / run_id / 'checkpoints')
assert os.listdir(trainer.checkpoint_callback.dirpath) == [f'epoch=0-step={limit_batches - 1}.ckpt']
@mock.patch('pytorch_lightning.loggers.mlflow.mlflow')
@mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient')
def test_mlflow_experiment_id_retrieved_once(client, mlflow, tmpdir):
"""
Test that the logger experiment_id retrieved only once.
"""
logger = MLFlowLogger('test', save_dir=tmpdir)
_ = logger.experiment
_ = logger.experiment
_ = logger.experiment
assert logger.experiment.get_experiment_by_name.call_count == 1
@mock.patch('pytorch_lightning.loggers.mlflow.mlflow')
@mock.patch('pytorch_lightning.loggers.mlflow.MlflowClient')
def test_mlflow_logger_with_unexpected_characters(client, mlflow, tmpdir):
"""
Test that the logger raises warning with special characters not accepted by MLFlow.
"""
logger = MLFlowLogger('test', save_dir=tmpdir)
metrics = {'[some_metric]': 10}
with pytest.warns(RuntimeWarning, match='special characters in metric name'):
logger.log_metrics(metrics)