289 lines
9.3 KiB
Python
289 lines
9.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import random
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.core.step_result import Result
|
|
from pytorch_lightning.trainer.states import TrainerState
|
|
from tests import _SKIPIF_ARGS_NO_GPU
|
|
from tests.helpers import BoringDataModule, BoringModel
|
|
|
|
|
|
def _setup_ddp(rank, worldsize):
|
|
import os
|
|
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
|
|
# initialize the process group
|
|
dist.init_process_group("gloo", rank=rank, world_size=worldsize)
|
|
|
|
|
|
def _ddp_test_fn(rank, worldsize, result_cls: Result):
|
|
_setup_ddp(rank, worldsize)
|
|
tensor = torch.tensor([1.0])
|
|
|
|
res = result_cls()
|
|
res.log("test_tensor", tensor, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM)
|
|
|
|
assert res["test_tensor"].item() == dist.get_world_size(), "Result-Log does not work properly with DDP and Tensors"
|
|
|
|
|
|
@pytest.mark.parametrize("result_cls", [Result])
|
|
@pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows")
|
|
def test_result_reduce_ddp(result_cls):
|
|
"""Make sure result logging works with DDP"""
|
|
tutils.reset_seed()
|
|
tutils.set_random_master_port()
|
|
|
|
worldsize = 2
|
|
mp.spawn(_ddp_test_fn, args=(worldsize, result_cls), nprocs=worldsize)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"test_option,do_train,gpus", [
|
|
pytest.param(0, True, 0, id='full_loop'),
|
|
pytest.param(0, False, 0, id='test_only'),
|
|
pytest.param(
|
|
1, False, 0, id='test_only_mismatching_tensor', marks=pytest.mark.xfail(raises=ValueError, match="Mism.*")
|
|
),
|
|
pytest.param(2, False, 0, id='mix_of_tensor_dims'),
|
|
pytest.param(3, False, 0, id='string_list_predictions'),
|
|
pytest.param(4, False, 0, id='int_list_predictions'),
|
|
pytest.param(5, False, 0, id='nested_list_predictions'),
|
|
pytest.param(6, False, 0, id='dict_list_predictions'),
|
|
pytest.param(7, True, 0, id='write_dict_predictions'),
|
|
pytest.param(0, True, 1, id='full_loop_single_gpu', marks=pytest.mark.skipif(**_SKIPIF_ARGS_NO_GPU))
|
|
]
|
|
)
|
|
def test_result_obj_predictions(tmpdir, test_option, do_train, gpus):
|
|
|
|
class CustomBoringModel(BoringModel):
|
|
|
|
def test_step(self, batch, batch_idx, optimizer_idx=None):
|
|
output = self(batch)
|
|
test_loss = self.loss(batch, output)
|
|
self.log('test_loss', test_loss)
|
|
|
|
batch_size = batch.size(0)
|
|
lst_of_str = [random.choice(['dog', 'cat']) for i in range(batch_size)]
|
|
lst_of_int = [random.randint(500, 1000) for i in range(batch_size)]
|
|
lst_of_lst = [[x] for x in lst_of_int]
|
|
lst_of_dict = [{k: v} for k, v in zip(lst_of_str, lst_of_int)]
|
|
|
|
# This is passed in from pytest via parameterization
|
|
option = getattr(self, 'test_option', 0)
|
|
prediction_file = getattr(self, 'prediction_file', 'predictions.pt')
|
|
|
|
lazy_ids = torch.arange(batch_idx * batch_size, batch_idx * batch_size + batch_size)
|
|
|
|
# Base
|
|
if option == 0:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('preds', output, prediction_file)
|
|
|
|
# Check mismatching tensor len
|
|
elif option == 1:
|
|
self.write_prediction('idxs', torch.cat((lazy_ids, lazy_ids)), prediction_file)
|
|
self.write_prediction('preds', output, prediction_file)
|
|
|
|
# write multi-dimension
|
|
elif option == 2:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('preds', output, prediction_file)
|
|
self.write_prediction('x', batch, prediction_file)
|
|
|
|
# write str list
|
|
elif option == 3:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('vals', lst_of_str, prediction_file)
|
|
|
|
# write int list
|
|
elif option == 4:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('vals', lst_of_int, prediction_file)
|
|
|
|
# write nested list
|
|
elif option == 5:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('vals', lst_of_lst, prediction_file)
|
|
|
|
# write dict list
|
|
elif option == 6:
|
|
self.write_prediction('idxs', lazy_ids, prediction_file)
|
|
self.write_prediction('vals', lst_of_dict, prediction_file)
|
|
|
|
elif option == 7:
|
|
self.write_prediction_dict({'idxs': lazy_ids, 'preds': output}, prediction_file)
|
|
|
|
class CustomBoringDataModule(BoringDataModule):
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.random_train, batch_size=4)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.random_val, batch_size=4)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.random_test, batch_size=4)
|
|
|
|
tutils.reset_seed()
|
|
prediction_file = Path(tmpdir) / 'predictions.pt'
|
|
|
|
dm = BoringDataModule()
|
|
model = CustomBoringModel()
|
|
model.test_step_end = None
|
|
model.test_epoch_end = None
|
|
model.test_end = None
|
|
|
|
model.test_option = test_option
|
|
model.prediction_file = prediction_file.as_posix()
|
|
|
|
if prediction_file.exists():
|
|
prediction_file.unlink()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=3,
|
|
weights_summary=None,
|
|
deterministic=True,
|
|
gpus=gpus,
|
|
)
|
|
|
|
# Prediction file shouldn't exist yet because we haven't done anything
|
|
assert not prediction_file.exists()
|
|
|
|
if do_train:
|
|
result = trainer.fit(model, dm)
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
|
assert result
|
|
result = trainer.test(datamodule=dm)
|
|
# TODO: add end-to-end test
|
|
# assert result[0]['test_loss'] < 0.6
|
|
else:
|
|
result = trainer.test(model, datamodule=dm)
|
|
|
|
# check prediction file now exists and is of expected length
|
|
assert prediction_file.exists()
|
|
predictions = torch.load(prediction_file)
|
|
assert len(predictions) == len(dm.random_test)
|
|
|
|
|
|
def test_result_gather_stack():
|
|
""" Test that tensors get concatenated when they all have the same shape. """
|
|
outputs = [
|
|
{
|
|
"foo": torch.zeros(4, 5)
|
|
},
|
|
{
|
|
"foo": torch.zeros(4, 5)
|
|
},
|
|
{
|
|
"foo": torch.zeros(4, 5)
|
|
},
|
|
]
|
|
result = Result.gather(outputs)
|
|
assert isinstance(result["foo"], torch.Tensor)
|
|
assert list(result["foo"].shape) == [12, 5]
|
|
|
|
|
|
def test_result_gather_concatenate():
|
|
""" Test that tensors get concatenated when they have varying size in first dimension. """
|
|
outputs = [
|
|
{
|
|
"foo": torch.zeros(4, 5)
|
|
},
|
|
{
|
|
"foo": torch.zeros(8, 5)
|
|
},
|
|
{
|
|
"foo": torch.zeros(3, 5)
|
|
},
|
|
]
|
|
result = Result.gather(outputs)
|
|
assert isinstance(result["foo"], torch.Tensor)
|
|
assert list(result["foo"].shape) == [15, 5]
|
|
|
|
|
|
def test_result_gather_scalar():
|
|
""" Test that 0-dim tensors get gathered and stacked correctly. """
|
|
outputs = [
|
|
{
|
|
"foo": torch.tensor(1)
|
|
},
|
|
{
|
|
"foo": torch.tensor(2)
|
|
},
|
|
{
|
|
"foo": torch.tensor(3)
|
|
},
|
|
]
|
|
result = Result.gather(outputs)
|
|
assert isinstance(result["foo"], torch.Tensor)
|
|
assert list(result["foo"].shape) == [3]
|
|
|
|
|
|
def test_result_gather_different_shapes():
|
|
""" Test that tensors of varying shape get gathered into a list. """
|
|
outputs = [
|
|
{
|
|
"foo": torch.tensor(1)
|
|
},
|
|
{
|
|
"foo": torch.zeros(2, 3)
|
|
},
|
|
{
|
|
"foo": torch.zeros(1, 2, 3)
|
|
},
|
|
]
|
|
result = Result.gather(outputs)
|
|
expected = [torch.tensor(1), torch.zeros(2, 3), torch.zeros(1, 2, 3)]
|
|
assert isinstance(result["foo"], list)
|
|
assert all(torch.eq(r, e).all() for r, e in zip(result["foo"], expected))
|
|
|
|
|
|
def test_result_gather_mixed_types():
|
|
""" Test that a collection of mixed types gets gathered into a list. """
|
|
outputs = [
|
|
{
|
|
"foo": 1.2
|
|
},
|
|
{
|
|
"foo": ["bar", None]
|
|
},
|
|
{
|
|
"foo": torch.tensor(1)
|
|
},
|
|
]
|
|
result = Result.gather(outputs)
|
|
expected = [1.2, ["bar", None], torch.tensor(1)]
|
|
assert isinstance(result["foo"], list)
|
|
assert result["foo"] == expected
|
|
|
|
|
|
def test_result_retrieve_last_logged_item():
|
|
result = Result()
|
|
result.log('a', 5., on_step=True, on_epoch=True)
|
|
assert result['a_epoch'] == 5.
|
|
assert result['a_step'] == 5.
|
|
assert result['a'] == 5.
|