lightning/tests/core/test_lightning_module.py

423 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import Mock, patch
import pytest
from torch import nn
from torch.optim import Adam, SGD
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel
def test_property_current_epoch():
""" Test that the current_epoch in LightningModule is accessible via the Trainer. """
model = BoringModel()
assert model.current_epoch == 0
trainer = Mock(current_epoch=123)
model.trainer = trainer
assert model.current_epoch == 123
def test_property_global_step():
""" Test that the global_step in LightningModule is accessible via the Trainer. """
model = BoringModel()
assert model.global_step == 0
trainer = Mock(global_step=123)
model.trainer = trainer
assert model.global_step == 123
def test_property_global_rank():
""" Test that the global rank in LightningModule is accessible via the Trainer. """
model = BoringModel()
assert model.global_rank == 0
trainer = Mock(global_rank=123)
model.trainer = trainer
assert model.global_rank == 123
def test_property_local_rank():
""" Test that the local rank in LightningModule is accessible via the Trainer. """
model = BoringModel()
assert model.local_rank == 0
trainer = Mock(local_rank=123)
model.trainer = trainer
assert model.local_rank == 123
def test_property_logger(tmpdir):
""" Test that the logger in LightningModule is accessible via the Trainer. """
model = BoringModel()
assert model.logger is None
logger = TensorBoardLogger(tmpdir)
trainer = Mock(logger=logger)
model.trainer = trainer
assert model.logger == logger
def test_automatic_optimization(tmpdir):
class TestModel(BoringModel):
def optimizer_step(self, *_, **__):
pass
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
accumulate_grad_batches=2,
)
with pytest.raises(
MisconfigurationException, match='overriding .* optimizer_step .* `accumulate_grad_batches` .* should be 1'
):
trainer.fit(model)
def test_automatic_optimization_num_calls(tmpdir):
with patch("torch.optim.SGD.step") as sgd_step, \
patch("torch.optim.SGD.zero_grad") as sgd_zero_grad, \
patch("torch.optim.Adam.step") as adam_step, \
patch("torch.optim.Adam.zero_grad") as adam_zero_grad:
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def configure_optimizers(self):
optimizer = SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_idx,
optimizer_closure,
on_tpu,
using_native_amp,
using_lbfgs,
):
assert optimizer_closure.__name__ == "train_step_and_backward_closure"
# update generator opt every 2 steps
if optimizer_idx == 0:
if batch_idx % 2 == 0:
assert isinstance(optimizer, SGD)
optimizer.step(closure=optimizer_closure)
# update discriminator opt every 4 steps
if optimizer_idx == 1:
if batch_idx % 4 == 0:
assert isinstance(optimizer, Adam)
optimizer.step(closure=optimizer_closure)
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
accumulate_grad_batches=1,
)
trainer.fit(model)
assert sgd_step.call_count == 4
assert sgd_zero_grad.call_count == 4
assert adam_step.call_count == 2
assert adam_zero_grad.call_count == 2
def test_params_groups_and_state_are_accessible(tmpdir):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def configure_optimizers(self):
optimizer = SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(
self,
epoch,
batch_idx,
optimizer,
optimizer_idx,
optimizer_closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False
):
# warm up lr
if self.trainer.global_step < 500:
lr_scale = min(1., float(self.trainer.global_step + 1) / 500.)
for pg in optimizer.param_groups:
pg['lr'] = lr_scale * 0.01
optimizer.step(closure=optimizer_closure)
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
limit_val_batches=1,
accumulate_grad_batches=1,
)
trainer.fit(model)
def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx, optimizer_idx=None):
return super().training_step(batch, batch_idx)
def __init__(self):
super().__init__()
self.layer_1 = nn.Sequential(
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
)
self.layer_2 = nn.Sequential(
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 2),
)
# set some weights to False to check untoggle works as expected.
self.layer_1[2].weight.requires_grad = False
self.layer_1[4].weight.requires_grad = False
self.layer_2[1].weight.requires_grad = False
self.layer_2[3].weight.requires_grad = False
def configure_optimizers(self):
optimizer = SGD(self.layer_1.parameters(), lr=0.1)
optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1)
return [optimizer, optimizer_2]
def optimizer_step(
self,
current_epoch,
batch_nb,
optimizer,
optimizer_idx,
closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False
):
if optimizer_idx == 0:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is False
if optimizer_idx == 1:
assert self.layer_1[0].weight.requires_grad is False
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
optimizer.step(closure=closure)
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
accumulate_grad_batches=1,
limit_val_batches=0,
)
results = trainer.fit(model)
assert results
def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.layer_1 = nn.Sequential(
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
)
self.layer_2 = nn.Sequential(
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 2),
)
self.layer_3 = nn.Sequential(
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 32),
nn.ReLU(),
nn.Linear(32, 2),
)
# set some weights to False to check untoggle works as expected.
self.layer_1[2].weight.requires_grad = False
self.layer_1[4].weight.requires_grad = False
self.layer_2[1].weight.requires_grad = False
self.layer_2[3].weight.requires_grad = False
self.layer_3[1].weight.requires_grad = False
self.layer_3[5].weight.requires_grad = False
def optimizer_step(
self,
current_epoch,
batch_nb,
optimizer,
optimizer_idx,
closure,
on_tpu=False,
using_native_amp=False,
using_lbfgs=False
):
if optimizer_idx == 0:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is False
assert self.layer_3[5].weight.requires_grad is False
if optimizer_idx == 1:
assert self.layer_1[0].weight.requires_grad is False
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is True
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is True
assert self.layer_3[5].weight.requires_grad is False
if optimizer_idx == 2:
assert self.layer_1[0].weight.requires_grad is True
assert self.layer_1[2].weight.requires_grad is False
assert self.layer_1[4].weight.requires_grad is False
assert self.layer_2[1].weight.requires_grad is False
assert self.layer_2[3].weight.requires_grad is False
assert self.layer_2[5].weight.requires_grad is False
assert self.layer_3[1].weight.requires_grad is False
assert self.layer_3[3].weight.requires_grad is True
assert self.layer_3[5].weight.requires_grad is False
optimizer.step(closure=closure)
def training_step(self, batch, batch_idx, optimizer_idx=None):
return super().training_step(batch, batch_idx)
@staticmethod
def combine_generators(gen_1, gen_2):
for p in gen_1:
yield p
for p in gen_2:
yield p
def configure_optimizers(self):
optimizer_1 = SGD(self.combine_generators(
self.layer_1.parameters(),
self.layer_2.parameters(),
), lr=0.1)
optimizer_2 = Adam(self.combine_generators(
self.layer_2.parameters(),
self.layer_3.parameters(),
), lr=0.1)
optimizer_3 = SGD(self.combine_generators(
self.layer_3.parameters(),
self.layer_1.parameters(),
), lr=0.1)
return [optimizer_1, optimizer_2, optimizer_3]
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=8,
accumulate_grad_batches=1,
)
trainer.fit(model)