lightning/tests/callbacks/test_quantization.py

137 lines
5.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import pytest
import torch
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import QuantizationAwareTraining
from pytorch_lightning.metrics.functional.mean_relative_error import mean_relative_error
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests import _SKIPIF_ARGS_NO_PT_QUANT, _SKIPIF_ARGS_PT_LE_1_4
from tests.helpers.datamodules import RegressDataModule
from tests.helpers.simple_models import RegressionModel
@pytest.mark.parametrize(
"observe", ['average', pytest.param('histogram', marks=pytest.mark.skipif(**_SKIPIF_ARGS_PT_LE_1_4))]
)
@pytest.mark.parametrize("fuse", [True, False])
@pytest.mark.skipif(**_SKIPIF_ARGS_NO_PT_QUANT)
def test_quantization(tmpdir, observe, fuse):
"""Parity test for quant model"""
seed_everything(42)
dm = RegressDataModule()
trainer_args = dict(
default_root_dir=tmpdir,
max_epochs=10,
gpus=1 if torch.cuda.is_available() else None,
)
model = RegressionModel()
qmodel = copy.deepcopy(model)
trainer = Trainer(**trainer_args)
trainer.fit(model, datamodule=dm)
org_size = model.model_size
org_score = torch.mean(torch.tensor([mean_relative_error(model(x), y) for x, y in dm.test_dataloader()]))
fusing_layers = [(f'layer_{i}', f'layer_{i}a') for i in range(3)] if fuse else None
qcb = QuantizationAwareTraining(observer_type=observe, modules_to_fuse=fusing_layers)
trainer = Trainer(callbacks=[qcb], **trainer_args)
trainer.fit(qmodel, datamodule=dm)
quant_calls = qcb._forward_calls
assert quant_calls == qcb._forward_calls
quant_size = qmodel.model_size
quant_score = torch.mean(torch.tensor([mean_relative_error(qmodel(x), y) for x, y in dm.test_dataloader()]))
# test that the trained model is smaller then initial
size_ratio = quant_size / org_size
assert size_ratio < 0.65
# test that the test score is almost the same as with pure training
assert torch.allclose(org_score, quant_score, atol=0.45)
@pytest.mark.skipif(**_SKIPIF_ARGS_NO_PT_QUANT)
def test_quantize_torchscript(tmpdir):
"""Test converting to torchscipt """
dm = RegressDataModule()
qmodel = RegressionModel()
qcb = QuantizationAwareTraining(input_compatible=False)
trainer = Trainer(callbacks=[qcb], default_root_dir=tmpdir, max_epochs=1)
trainer.fit(qmodel, datamodule=dm)
qmodel.to_torchscript()
def test_quantization_exceptions(tmpdir):
"""Test wrong fuse layers"""
with pytest.raises(MisconfigurationException, match='Unsupported qconfig'):
QuantizationAwareTraining(qconfig=['abc'])
with pytest.raises(MisconfigurationException, match='Unsupported observer type'):
QuantizationAwareTraining(observer_type='abc')
with pytest.raises(MisconfigurationException, match='Unsupported `collect_quantization`'):
QuantizationAwareTraining(collect_quantization='abc')
with pytest.raises(MisconfigurationException, match='Unsupported `collect_quantization`'):
QuantizationAwareTraining(collect_quantization=1.2)
fusing_layers = [(f'layers.mlp_{i}', f'layers.NONE-mlp_{i}a') for i in range(3)]
qcb = QuantizationAwareTraining(modules_to_fuse=fusing_layers)
trainer = Trainer(callbacks=[qcb], default_root_dir=tmpdir, max_epochs=1)
with pytest.raises(MisconfigurationException, match='one or more of them is not your model attributes'):
trainer.fit(RegressionModel(), datamodule=RegressDataModule())
def custom_trigger_never(trainer):
return False
def custom_trigger_even(trainer):
return trainer.current_epoch % 2 == 0
def custom_trigger_last(trainer):
return trainer.current_epoch == (trainer.max_epochs - 1)
@pytest.mark.parametrize(
"trigger_fn,expected_count", [
(None, 9),
(3, 3),
(custom_trigger_never, 0),
(custom_trigger_even, 5),
(custom_trigger_last, 2),
]
)
@pytest.mark.skipif(**_SKIPIF_ARGS_NO_PT_QUANT)
def test_quantization_triggers(tmpdir, trigger_fn, expected_count):
"""Test how many times the quant is called"""
dm = RegressDataModule()
qmodel = RegressionModel()
qcb = QuantizationAwareTraining(collect_quantization=trigger_fn)
trainer = Trainer(
callbacks=[qcb],
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=4,
)
trainer.fit(qmodel, datamodule=dm)
assert qcb._forward_calls == expected_count