lightning/tests/base/model_valid_steps.py

92 lines
2.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from collections import OrderedDict
import torch
class ValidationStepVariations(ABC):
"""
Houses all variations of validation steps
"""
def validation_step(self, batch, batch_idx, *args, **kwargs):
"""
Lightning calls this inside the validation loop
:param batch:
:return:
"""
self.validation_step_called = True
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc).type_as(x)
output = OrderedDict({
'val_loss': loss_val,
'val_acc': val_acc,
'test_dic': {
'val_loss_a': loss_val
},
})
return output
def validation_step__dp(self, batch, batch_idx, *args, **kwargs):
self.validation_step_called = True
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x.to(self.device))
y = y.to(y_hat.device)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc).type_as(x)
self.log('val_loss', loss_val)
self.log('val_acc', val_acc)
return loss_val
def validation_step__multiple_dataloaders(self, batch, batch_idx, dataloader_idx, **kwargs):
"""
Lightning calls this inside the validation loop
:param batch:
:return:
"""
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
loss_val = self.loss(y, y_hat)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc).type_as(x)
output = OrderedDict({
f'val_loss_{dataloader_idx}': loss_val,
f'val_acc_{dataloader_idx}': val_acc,
})
return output