lightning/tests
Kaushik B b5d29df646
Fix: hparams.yaml saved twice when using TensorBoardLogger (#5953)
2021-02-15 22:31:31 +05:30
..
accelerators move accelerator legacy tests (#5948) 2021-02-13 19:42:18 -05:00
base fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
callbacks Fix: Repeated .fit() calls ignore max_steps iteration bound (#5936) 2021-02-13 07:36:22 +00:00
checkpointing PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
core remove legacy accelerators (#5949) 2021-02-14 16:03:45 +00:00
deprecated_api PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
helpers PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
loggers Fix: hparams.yaml saved twice when using TensorBoardLogger (#5953) 2021-02-15 22:31:31 +05:30
metrics fixing some compatibility with PT 1.8 (#5864) 2021-02-09 18:25:57 +01:00
models PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
overrides fix miss-leading imports in tests (#5873) 2021-02-09 05:10:52 -05:00
plugins remove legacy accelerators (#5949) 2021-02-14 16:03:45 +00:00
trainer move accelerator legacy tests (#5948) 2021-02-13 19:42:18 -05:00
tuner formatting tests1/n (#5843) 2021-02-06 08:22:10 -05:00
utilities Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
README.md Fix pre-commit trailing-whitespace and end-of-file-fixer hooks. (#5387) 2021-01-26 14:27:56 +01:00
__init__.py Quantisation (#5706) 2021-02-11 07:04:57 -05:00
collect_env_details.py add copyright to tests (#5143) 2021-01-05 09:57:37 +01:00
conftest.py PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
test_profiler.py formatting flake8 & isort (#5824) 2021-02-05 18:33:12 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4