lightning/pytorch_lightning/loops/base.py

354 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from abc import ABC, abstractmethod
from typing import Any, Dict, Generic, Optional, Type, TypeVar, Union
from deprecate import void
from torchmetrics import Metric
import pytorch_lightning as pl
from pytorch_lightning.trainer.connectors.logger_connector.result import _ResultCollection
from pytorch_lightning.trainer.progress import BaseProgress
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _fault_tolerant_training
T = TypeVar("T") # the output type of `run`
class Loop(ABC, Generic[T]):
"""Basic Loops interface. All classes derived from this must implement the following properties and methods:
* :attr:`done` (property): Condition to break the loop
* :attr:`reset` (method): Resets the internal state between multiple calls of :attr:`run`
* :attr:`advance` (method): Implements one step of the loop
This class implements the following loop structure:
.. code-block:: python
on_run_start()
while not done:
on_advance_start()
advance()
on_advance_end()
on_run_end()
"""
def __init__(self) -> None:
self._restarting = False
self._trainer: Optional["pl.Trainer"] = None
@property
def trainer(self) -> "pl.Trainer":
if self._trainer is None:
raise RuntimeError("The loop is not attached to a Trainer.")
return self._trainer
@trainer.setter
def trainer(self, trainer: "pl.Trainer") -> None:
"""Connects this loop's trainer and its children."""
if not isinstance(trainer, pl.Trainer):
raise MisconfigurationException(
f"Loop {self.__class__.__name__} should be connected to a `Trainer`, found: {trainer}."
)
self._trainer = trainer
for v in self.__dict__.values():
if isinstance(v, Loop):
v.trainer = trainer
@property
def restarting(self) -> bool:
"""Whether the state of this loop was reloaded and it needs to restart."""
return self._restarting
@restarting.setter
def restarting(self, restarting: bool) -> None:
"""Connects this loop's restarting value and its children."""
self._restarting = restarting
for loop in vars(self).values():
if isinstance(loop, Loop):
loop.restarting = restarting
@property
@abstractmethod
def done(self) -> bool:
"""Property indicating when the loop is finished.
Example::
@property
def done(self):
return self.trainer.global_step >= self.trainer.max_steps
"""
@property
def skip(self) -> bool:
"""Determine whether to return immediately from the call to :meth:`run`.
Example::
@property
def skip(self):
return len(self.trainer.train_dataloader) == 0
"""
return False
def connect(self, **kwargs: "Loop") -> None:
"""Optionally connect one or multiple loops to this one.
Linked loops should form a tree.
"""
def replace(self, **loops: Union["Loop", Type["Loop"]]) -> None:
"""Optionally replace one or multiple of this loop's sub-loops.
This methods takes care of instantiating the class (if necessary) with all existing arguments, connecting all
sub-loops of the old loop to the new instance, setting the ``Trainer`` reference, and connecting the new loop to
the parent.
Args:
**loops: ``Loop`` subclasses or instances. The name used should match the loop attribute name you want to
replace.
Raises:
MisconfigurationException: When passing a ``Loop`` class, if the ``__init__`` arguments do not match those
of the Loop class it replaces.
"""
new_loops = {}
for name, type_or_object in loops.items():
old_loop = getattr(self, name)
if isinstance(type_or_object, type):
# compare the signatures
old_parameters = inspect.signature(old_loop.__class__.__init__).parameters
current_parameters = inspect.signature(type_or_object.__init__).parameters
if old_parameters != current_parameters:
raise MisconfigurationException(
f"`{self.__class__.__name__}.replace({type_or_object.__name__})` can only be used if the"
f" `__init__` signatures match but `{old_loop.__class__.__name__}` does not."
)
# instantiate the loop
kwargs = {p: getattr(old_loop, p) for p in old_parameters if p != "self"}
loop = type_or_object(**kwargs)
else:
loop = type_or_object
# connect sub-loops
kwargs = {n: l for n, l in old_loop.__dict__.items() if isinstance(l, Loop)}
loop.connect(**kwargs)
# set the trainer reference
loop.trainer = self.trainer
new_loops[name] = loop
# connect to self
self.connect(**new_loops)
def on_skip(self) -> T:
"""The function to run when :meth:`run` should be skipped, determined by the condition in :attr:`skip`.
Returns:
the default output value of :meth:`on_run_end`
"""
def run(self, *args: Any, **kwargs: Any) -> T:
"""The main entry point to the loop.
Will frequently check the :attr:`done` condition and calls :attr:`advance`
until :attr:`done` evaluates to ``True``.
Override this if you wish to change the default behavior. The default implementation is:
Example::
def run(self, *args, **kwargs):
if self.skip:
return self.on_skip()
self.reset()
self.on_run_start(*args, **kwargs)
while not self.done:
self.advance(*args, **kwargs)
output = self.on_run_end()
return output
Returns:
The output of :attr:`on_run_end` (often outputs collected from each step of the loop)
"""
if self.skip:
return self.on_skip()
self.reset()
self.on_run_start(*args, **kwargs)
while not self.done:
try:
self.on_advance_start(*args, **kwargs)
self.advance(*args, **kwargs)
self.on_advance_end()
self._restarting = False
except StopIteration:
break
self._restarting = False
output = self.on_run_end()
return output
@abstractmethod
def reset(self) -> None:
"""Resets the internal state of the loop at the beginning of each call to :attr:`run`.
Example::
def reset(self):
# reset your internal state or add custom logic
# if you expect run() to be called multiple times
self.current_iteration = 0
self.outputs = []
"""
def on_run_start(self, *args: Any, **kwargs: Any) -> None:
"""Hook to be called as the first thing after entering :attr:`run` (except the state reset).
Accepts all arguments passed to :attr:`run`.
"""
void(*args, **kwargs)
def on_advance_start(self, *args: Any, **kwargs: Any) -> None:
"""Hook to be called each time before :attr:`advance` is called.
Accepts all arguments passed to :attr`run`.
"""
void(*args, **kwargs)
@abstractmethod
def advance(self, *args: Any, **kwargs: Any) -> None:
"""Performs a single step.
Accepts all arguments passed to :attr:`run`.
Example::
def advance(self, iterator):
batch = next(iterator)
loss = self.trainer.lightning_module.training_step(batch, batch_idx)
...
"""
def on_advance_end(self) -> None:
"""Hook to be called each time after :attr:`advance` is called."""
def on_run_end(self) -> T:
"""Hook to be called at the end of the run.
Its return argument is returned from :attr:`run`.
"""
def teardown(self) -> None:
"""Use to release memory etc."""
def on_save_checkpoint(self) -> Dict:
"""Called when saving a model checkpoint, use to persist loop state.
Returns:
The current loop state.
"""
return {}
def on_load_checkpoint(self, state_dict: Dict) -> None:
"""Called when loading a model checkpoint, use to reload loop state."""
def state_dict(self, destination: Optional[Dict] = None, prefix: str = "") -> Dict:
"""The state dict is determined by the state and progress of this loop and all its children.
Args:
destination: An existing dictionary to update with this loop's state. By default a new dictionary
is returned.
prefix: A prefix for each key in the state dictionary
"""
if destination is None:
destination = {}
destination[prefix + "state_dict"] = self.on_save_checkpoint()
# do not get the mode from `self.trainer` because it might not have been attached yet
ft_enabled = _fault_tolerant_training()
for k, v in self.__dict__.items():
key = prefix + k
if isinstance(v, BaseProgress):
destination[key] = v.state_dict()
elif isinstance(v, Loop):
v.state_dict(destination, key + ".")
elif ft_enabled and isinstance(v, _ResultCollection):
# sync / unsync metrics
v.sync()
destination[key] = v.state_dict()
v.unsync()
return destination
def load_state_dict(
self,
state_dict: Dict,
prefix: str = "",
metrics: Optional[Dict[str, Metric]] = None,
) -> None:
"""Loads the state of this loop and all its children."""
self._load_from_state_dict(state_dict.copy(), prefix, metrics)
for k, v in self.__dict__.items():
if isinstance(v, Loop):
v.load_state_dict(state_dict.copy(), prefix + k + ".")
self.restarting = True
def _load_from_state_dict(self, state_dict: Dict, prefix: str, metrics: Optional[Dict[str, Metric]] = None) -> None:
for k, v in self.__dict__.items():
key = prefix + k
if key not in state_dict:
# compatibility with old checkpoints
continue
if isinstance(v, BaseProgress):
v.load_state_dict(state_dict[key])
elif (
isinstance(v, _ResultCollection)
and self.trainer is not None
and self.trainer.lightning_module is not None
):
metric_attributes = {
name: module
for name, module in self.trainer.lightning_module.named_modules()
if isinstance(module, Metric)
}
if metrics:
metric_attributes.update(metrics)
# The `_ResultCollection` objects have 2 types of metrics: `Tensor` and `torchmetrics.Metric`.
# When creating a checkpoint, the `Metric`s are dropped from the loop `state_dict` to serialize only
# Python primitives. However, their states are saved with the model's `state_dict`.
# On reload, we need to re-attach the `Metric`s back to the `_ResultCollection`.
# The references are provided through the `metric_attributes` dictionary.
v.load_state_dict(state_dict[key], metrics=metric_attributes, sync_fn=self.trainer.strategy.reduce)
if not self.trainer.is_global_zero:
v.reset(metrics=False)
if prefix + "state_dict" in state_dict: # compatibility with old checkpoints
self.on_load_checkpoint(state_dict[prefix + "state_dict"])