lightning/pytorch_lightning/trainer/optimizers.py

186 lines
8.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from typing import List, Optional, Tuple
import torch
from torch import optim
from torch.optim.optimizer import Optimizer
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class TrainerOptimizersMixin(ABC):
def init_optimizers(self, model: LightningModule) -> Tuple[List, List, List]:
optim_conf = model.configure_optimizers()
if optim_conf is None:
rank_zero_warn(
'`LightningModule.configure_optimizers` returned `None`, this fit will run with no optimizer',
UserWarning,
)
optim_conf = _MockOptimizer()
optimizers, lr_schedulers, optimizer_frequencies = [], [], []
monitor = None
# single output, single optimizer
if isinstance(optim_conf, Optimizer):
optimizers = [optim_conf]
# two lists, optimizer + lr schedulers
elif isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 and isinstance(optim_conf[0], list):
opt, sch = optim_conf
optimizers = opt
lr_schedulers = sch if isinstance(sch, list) else [sch]
# single dictionary
elif isinstance(optim_conf, dict):
optimizers = [optim_conf["optimizer"]]
monitor = optim_conf.get('monitor', None)
lr_schedulers = [optim_conf["lr_scheduler"]] if "lr_scheduler" in optim_conf else []
# multiple dictionaries
elif isinstance(optim_conf, (list, tuple)) and all(isinstance(d, dict) for d in optim_conf):
optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf]
lr_schedulers = [opt_dict["lr_scheduler"] for opt_dict in optim_conf if "lr_scheduler" in opt_dict]
optimizer_frequencies = [
opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency", None) is not None
]
# assert that if frequencies are present, they are given for all optimizers
if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers):
raise ValueError("A frequency must be given to each optimizer.")
# single list or tuple, multiple optimizer
elif isinstance(optim_conf, (list, tuple)):
optimizers = list(optim_conf)
# unknown configuration
else:
raise MisconfigurationException(
'Unknown configuration for model optimizers.'
' Output from `model.configure_optimizers()` should either be:\n'
' * `torch.optim.Optimizer`\n'
' * [`torch.optim.Optimizer`]\n'
' * ([`torch.optim.Optimizer`], [`torch.optim.lr_scheduler`])\n'
' * {"optimizer": `torch.optim.Optimizer`, (optional) "lr_scheduler": `torch.optim.lr_scheduler`}\n'
' * A list of the previously described dict format, with an optional "frequency" key (int)'
)
lr_schedulers = self.configure_schedulers(lr_schedulers, monitor=monitor)
return optimizers, lr_schedulers, optimizer_frequencies
def convert_to_lightning_optimizers(self):
def _convert_to_lightning_optimizer(trainer, optimizer):
if not isinstance(optimizer, LightningOptimizer):
optimizer = LightningOptimizer(optimizer)
optimizer._on_trainer_init(trainer)
return optimizer
if self._enable_pl_optimizer:
self.optimizers = [_convert_to_lightning_optimizer(self, opt) for opt in self.optimizers]
def configure_schedulers(self, schedulers: list, monitor: Optional[str] = None):
# Convert each scheduler into dict structure with relevant information
lr_schedulers = []
default_config = {
'scheduler': None,
'name': None, # no custom name
'interval': 'epoch', # after epoch is over
'frequency': 1, # every epoch/batch
'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler
'monitor': monitor, # value to monitor for ReduceLROnPlateau
'strict': True, # enforce that the monitor exists for ReduceLROnPlateau
}
for scheduler in schedulers:
if isinstance(scheduler, dict):
# check provided keys
extra_keys = [k for k in scheduler.keys() if k not in default_config.keys()]
if extra_keys:
rank_zero_warn(f'Found unsupported keys in the lr scheduler dict: {extra_keys}', RuntimeWarning)
if 'scheduler' not in scheduler:
raise MisconfigurationException(
'The lr scheduler dict must have the key "scheduler" with its item being an lr scheduler'
)
scheduler['reduce_on_plateau'] = isinstance(
scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau
)
if scheduler['reduce_on_plateau'] and scheduler.get('monitor', None) is None:
raise MisconfigurationException(
'The lr scheduler dict must include a monitor when a `ReduceLROnPlateau` scheduler is used.'
' For example: {"optimizer": optimizer, "lr_scheduler":'
' {"scheduler": scheduler, "monitor": "your_loss"}}'
)
lr_schedulers.append({**default_config, **scheduler})
elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau):
if monitor is None:
raise MisconfigurationException(
'`configure_optimizers` must include a monitor when a `ReduceLROnPlateau` scheduler is used.'
' For example: {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "metric_to_track"}'
)
lr_schedulers.append(
{**default_config, 'scheduler': scheduler, 'reduce_on_plateau': True, 'monitor': monitor}
)
elif isinstance(scheduler, optim.lr_scheduler._LRScheduler):
lr_schedulers.append({**default_config, 'scheduler': scheduler})
else:
raise ValueError(f'The provided lr scheduler "{scheduler}" is invalid')
return lr_schedulers
def reinit_scheduler_properties(self, optimizers: list, schedulers: list):
# Reinitialize optimizer.step properties added by schedulers
for scheduler in schedulers:
scheduler = scheduler['scheduler']
for optimizer in optimizers:
# check that we dont mix users optimizers and schedulers
if scheduler.optimizer == optimizer:
# Find the mro belonging to the base lr scheduler class
for i, mro in enumerate(scheduler.__class__.__mro__):
if mro in (optim.lr_scheduler._LRScheduler, optim.lr_scheduler.ReduceLROnPlateau):
idx = i
state = scheduler.state_dict()
else:
state = None
scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer)
if state is not None:
scheduler.load_state_dict(state)
class _MockOptimizer(Optimizer):
"""The `_MockOptimizer` will be used inplace of an optimizer in the event that `None`
is returned from `configure_optimizers`.
"""
def __init__(self):
super().__init__([torch.zeros(1)], {})
def add_param_group(self, param_group):
pass # Do Nothing
def load_state_dict(self, state_dict):
pass # Do Nothing
def state_dict(self):
return {} # Return Empty
def step(self, closure=None):
if closure is not None:
closure()
def zero_grad(self):
pass # Do Nothing
def __repr__(self):
return 'No Optimizer'