lightning/tests/tests_pytorch/models/test_hooks.py

985 lines
40 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial, update_wrapper
from inspect import getmembers, isfunction
from unittest import mock
from unittest.mock import ANY, PropertyMock
import pytest
import torch
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
from lightning.pytorch import Callback, LightningDataModule, LightningModule, Trainer, __version__
from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel, RandomDataset
from lightning.pytorch.utilities.model_helpers import is_overridden
from torch import Tensor
from torch.utils.data import DataLoader
from tests_pytorch.helpers.runif import RunIf
class HookedDataModule(BoringDataModule):
def __init__(self, called):
super().__init__()
def call(hook, fn, *args, **kwargs):
out = fn(*args, **kwargs)
d = {"name": hook}
if args:
d["args"] = args
if kwargs:
d["kwargs"] = kwargs
called.append(d)
return out
for h in get_members(LightningDataModule):
attr = getattr(self, h)
partial_h = partial(call, h, attr)
update_wrapper(partial_h, attr)
setattr(self, h, partial_h)
@pytest.mark.parametrize("max_steps", [1, 2, 3])
def test_on_before_zero_grad_called(tmpdir, max_steps):
class CurrentTestModel(BoringModel):
on_before_zero_grad_called = 0
def on_before_zero_grad(self, optimizer):
self.on_before_zero_grad_called += 1
model = CurrentTestModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=max_steps, max_epochs=2)
assert model.on_before_zero_grad_called == 0
trainer.fit(model)
assert max_steps == model.on_before_zero_grad_called
model.on_before_zero_grad_called = 0
trainer.test(model)
assert model.on_before_zero_grad_called == 0
def test_on_train_epoch_end_metrics_collection(tmpdir):
"""Test that progress bar metrics also get collected at the end of an epoch."""
num_epochs = 3
class CurrentModel(BoringModel):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
self.log_dict({"step_metric": torch.tensor(-1), "shared_metric": 100}, logger=False, prog_bar=True)
return output
def on_train_epoch_end(self):
epoch = self.current_epoch
# both scalar tensors and Python numbers are accepted
self.log_dict(
{f"epoch_metric_{epoch}": torch.tensor(epoch), "shared_metric": 111}, logger=False, prog_bar=True
)
model = CurrentModel()
trainer = Trainer(max_epochs=num_epochs, default_root_dir=tmpdir, overfit_batches=2)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
metrics = trainer.progress_bar_callback.get_metrics(trainer, model)
# metrics added in training step should be unchanged by epoch end method
assert metrics["step_metric"] == -1
# a metric shared in both methods gets overwritten by epoch_end
assert metrics["shared_metric"] == 111
# metrics are kept after each epoch
for i in range(num_epochs):
assert metrics[f"epoch_metric_{i}"] == i
@pytest.mark.parametrize(
("accelerator", "expected_device_str"),
[
pytest.param("gpu", "cuda:0", marks=RunIf(min_cuda_gpus=1)),
pytest.param("mps", "mps:0", marks=RunIf(mps=True)),
],
)
@mock.patch(
"lightning.pytorch.strategies.Strategy.lightning_module",
new_callable=PropertyMock,
)
def test_apply_batch_transfer_handler(model_getter_mock, accelerator, expected_device_str):
expected_device = torch.device(expected_device_str)
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestModel(BoringModel):
rank = 0
transfer_batch_to_device_hook_rank = None
on_after_batch_transfer_hook_rank = None
def on_after_batch_transfer(self, batch, dataloader_idx):
assert dataloader_idx == 0
assert batch.samples.device == batch.targets.device == expected_device
self.on_after_batch_transfer_hook_rank = self.rank
self.rank += 1
batch.targets *= 2
return batch
def transfer_batch_to_device(self, batch, device, dataloader_idx):
assert dataloader_idx == 0
self.transfer_batch_to_device_hook_rank = self.rank
self.rank += 1
batch.samples = batch.samples.to(device)
batch.targets = batch.targets.to(device)
return batch
model = CurrentTestModel()
batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(accelerator=accelerator, devices=1)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
model_getter_mock.return_value = model
batch_gpu = trainer.strategy.batch_to_device(batch, expected_device)
assert model.transfer_batch_to_device_hook_rank == 0
assert model.on_after_batch_transfer_hook_rank == 1
assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device
assert torch.allclose(batch_gpu.samples.cpu(), torch.zeros(5, 32))
assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2)
@RunIf(min_cuda_gpus=2, standalone=True)
def test_transfer_batch_hook_ddp(tmpdir):
"""Test custom data are properly moved to the right device using ddp."""
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
def to(self, device, **kwargs):
self.samples = self.samples.to(device, **kwargs)
return self
def collate_fn(batch):
return CustomBatch(batch)
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
assert batch.samples.device == self.device
assert isinstance(batch_idx, int)
def train_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64), collate_fn=collate_fn)
model = TestModel()
model.validation_step = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=0,
max_epochs=1,
strategy="ddp",
accelerator="gpu",
devices=2,
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
def get_members(cls):
return {h for h, _ in getmembers(cls, predicate=isfunction) if not h.startswith("_")}
class HookedCallback(Callback):
def __init__(self, called):
def call(hook, fn, *args, **kwargs):
out = fn(*args, **kwargs)
d = {"name": f"Callback.{hook}"}
if args:
d["args"] = args
if kwargs:
d["kwargs"] = kwargs
called.append(d)
return out
for h in get_members(Callback):
attr = getattr(self, h)
partial_h = partial(call, h, attr)
update_wrapper(partial_h, attr)
setattr(self, h, partial_h)
def state_dict(*args, **kwargs):
return {"foo": True}
class HookedModel(BoringModel):
def __init__(self, called):
super().__init__()
pl_module_hooks = get_members(LightningModule)
# remove non-hooks
pl_module_hooks.difference_update({"optimizers", "log", "log_dict"})
# remove most `nn.Module` hooks
module_hooks = get_members(torch.nn.Module)
module_hooks.difference_update({"forward", "zero_grad", "train"})
pl_module_hooks.difference_update(module_hooks)
def call(hook, fn, *args, **kwargs):
out = fn(*args, **kwargs)
d = {"name": hook}
if args:
d["args"] = args
elif hook == "train":
# DeepSpeed calls `train(mode)` but we do not. Standardize
# https://github.com/microsoft/DeepSpeed/pull/571
d["args"] = (True,)
if kwargs:
d["kwargs"] = kwargs
called.append(d)
return out
for h in pl_module_hooks:
attr = getattr(self, h)
partial_h = partial(call, h, attr)
update_wrapper(partial_h, attr)
setattr(self, h, partial_h)
def _train_batch(self, *args, **kwargs):
if self.automatic_optimization:
return self._auto_train_batch(*args, **kwargs)
return self._manual_train_batch(*args, **kwargs)
@staticmethod
def _auto_train_batch(trainer, model, batches, device, current_epoch=0, current_batch=0, **kwargs):
using_deepspeed = kwargs.get("strategy") == "deepspeed"
out = []
for i in range(current_batch, batches):
out.extend(
[
{"name": "on_before_batch_transfer", "args": (ANY, 0)},
{"name": "transfer_batch_to_device", "args": (ANY, device, 0)},
{"name": "on_after_batch_transfer", "args": (ANY, 0)},
{"name": "Callback.on_train_batch_start", "args": (trainer, model, ANY, i)},
{"name": "on_train_batch_start", "args": (ANY, i)},
{"name": "forward", "args": (ANY,)},
{"name": "training_step", "args": (ANY, i)},
{"name": "Callback.on_before_zero_grad", "args": (trainer, model, ANY)},
{"name": "on_before_zero_grad", "args": (ANY,)},
{"name": "optimizer_zero_grad", "args": (current_epoch, i, ANY)},
{"name": "Callback.on_before_backward", "args": (trainer, model, ANY)},
{"name": "on_before_backward", "args": (ANY,)},
# DeepSpeed handles backward internally
*([{"name": "backward", "args": (ANY,)}] if not using_deepspeed else []),
{"name": "Callback.on_after_backward", "args": (trainer, model)},
{"name": "on_after_backward"},
# note: unscaling happens here in the case of AMP
{"name": "Callback.on_before_optimizer_step", "args": (trainer, model, ANY)},
{"name": "on_before_optimizer_step", "args": (ANY,)},
{
"name": "clip_gradients",
"args": (ANY,),
"kwargs": {"gradient_clip_val": None, "gradient_clip_algorithm": None},
},
{
"name": "configure_gradient_clipping",
"args": (ANY,),
"kwargs": {"gradient_clip_val": None, "gradient_clip_algorithm": None},
},
# this is after because it refers to the `LightningModule.optimizer_step` hook which encapsulates
# the actual call to `Precision.optimizer_step`
{
"name": "optimizer_step",
"args": (current_epoch, i, ANY, ANY),
},
*(
[{"name": "lr_scheduler_step", "args": (ANY, None)}]
if i == (trainer.num_training_batches - 1)
else []
),
{"name": "Callback.on_train_batch_end", "args": (trainer, model, {"loss": ANY}, ANY, i)},
{"name": "on_train_batch_end", "args": ({"loss": ANY}, ANY, i)},
]
)
return out
@staticmethod
def _manual_train_batch(trainer, model, batches, device, **kwargs):
using_deepspeed = kwargs.get("strategy") == "deepspeed"
out = []
for i in range(batches):
out.extend(
[
{"name": "on_before_batch_transfer", "args": (ANY, 0)},
{"name": "transfer_batch_to_device", "args": (ANY, device, 0)},
{"name": "on_after_batch_transfer", "args": (ANY, 0)},
{"name": "Callback.on_train_batch_start", "args": (trainer, model, ANY, i)},
{"name": "on_train_batch_start", "args": (ANY, i)},
{"name": "forward", "args": (ANY,)},
{"name": "Callback.on_before_backward", "args": (trainer, model, ANY)},
{"name": "on_before_backward", "args": (ANY,)},
# DeepSpeed handles backward internally
*([{"name": "backward", "args": (ANY,)}] if not using_deepspeed else []),
{"name": "Callback.on_after_backward", "args": (trainer, model)},
{"name": "on_after_backward"},
# `manual_backward` calls the previous 3
{"name": "manual_backward", "args": (ANY,)},
{"name": "closure"},
{"name": "Callback.on_before_optimizer_step", "args": (trainer, model, ANY)},
{"name": "on_before_optimizer_step", "args": (ANY,)},
{"name": "training_step", "args": (ANY, i)},
{"name": "Callback.on_train_batch_end", "args": (trainer, model, {"loss": ANY}, ANY, i)},
{"name": "on_train_batch_end", "args": ({"loss": ANY}, ANY, i)},
]
)
return out
@staticmethod
def _eval_epoch(fn, trainer, model, batches, key, device):
return [
{"name": f"Callback.on_{fn}_epoch_start", "args": (trainer, model)},
{"name": f"on_{fn}_epoch_start"},
*HookedModel._eval_batch(fn, trainer, model, batches, key, device=device),
{"name": f"Callback.on_{fn}_epoch_end", "args": (trainer, model)},
{"name": f"on_{fn}_epoch_end"},
]
@staticmethod
def _eval_batch(fn, trainer, model, batches, key, device):
out = []
outputs = {key: ANY}
for i in range(batches):
out.extend(
[
{"name": "on_before_batch_transfer", "args": (ANY, 0)},
{"name": "transfer_batch_to_device", "args": (ANY, device, 0)},
{"name": "on_after_batch_transfer", "args": (ANY, 0)},
{"name": f"Callback.on_{fn}_batch_start", "args": (trainer, model, ANY, i)},
{"name": f"on_{fn}_batch_start", "args": (ANY, i)},
{"name": "forward", "args": (ANY,)},
{"name": f"{fn}_step", "args": (ANY, i)},
{"name": f"Callback.on_{fn}_batch_end", "args": (trainer, model, outputs, ANY, i)},
{"name": f"on_{fn}_batch_end", "args": (outputs, ANY, i)},
]
)
return out
@staticmethod
def _predict_batch(trainer, model, batches, device):
out = []
for i in range(batches):
out.extend(
[
{"name": "on_before_batch_transfer", "args": (ANY, 0)},
{"name": "transfer_batch_to_device", "args": (ANY, device, 0)},
{"name": "on_after_batch_transfer", "args": (ANY, 0)},
{"name": "Callback.on_predict_batch_start", "args": (trainer, model, ANY, i)},
{"name": "on_predict_batch_start", "args": (ANY, i)},
{"name": "forward", "args": (ANY,)},
{"name": "predict_step", "args": (ANY, i)},
{"name": "Callback.on_predict_batch_end", "args": (trainer, model, ANY, ANY, i)},
{"name": "on_predict_batch_end", "args": (ANY, ANY, i)},
]
)
return out
# override so that it gets called
def configure_model(self):
...
# override so that it gets called
def on_validation_model_train(self):
...
# override so that it gets called
def on_test_model_train(self):
...
# override so that it gets called
def on_predict_model_train(self):
...
@pytest.mark.parametrize(
"kwargs",
[
{},
# these precision plugins modify the optimization flow, so testing them explicitly
pytest.param({"accelerator": "gpu", "devices": 1, "precision": "16-mixed"}, marks=RunIf(min_cuda_gpus=1)),
pytest.param(
{"accelerator": "gpu", "devices": 1, "precision": "16-mixed", "strategy": "deepspeed"},
marks=RunIf(min_cuda_gpus=1, standalone=True, deepspeed=True),
),
],
)
@pytest.mark.parametrize("automatic_optimization", [True, False])
@pytest.mark.parametrize("override_on_validation_model_train", [True, False])
def test_trainer_model_hook_system_fit(override_on_validation_model_train, automatic_optimization, kwargs, tmpdir):
called = []
class TestModel(HookedModel):
def __init__(self, *args):
super().__init__(*args)
self.automatic_optimization = automatic_optimization
def training_step(self, batch, batch_idx):
if self.automatic_optimization:
return super().training_step(batch, batch_idx)
loss = self.step(batch[0])
opt = self.optimizers()
opt.zero_grad()
self.manual_backward(loss)
opt.step(lambda: called.append({"name": "closure"}))
return {"loss": loss}
model = TestModel(called)
if not override_on_validation_model_train:
model.on_validation_model_train = None
assert is_overridden("on_validation_model_train", model) == override_on_validation_model_train
callback = HookedCallback(called)
train_batches = 2
val_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=train_batches,
limit_val_batches=val_batches,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[callback],
**kwargs,
)
trainer.fit(model)
saved_ckpt = {
"callbacks": ANY,
"epoch": 0,
"global_step": train_batches,
"lr_schedulers": ANY,
"optimizer_states": ANY,
"pytorch-lightning_version": __version__,
"state_dict": ANY,
"loops": ANY,
}
using_deepspeed = kwargs.get("strategy") == "deepspeed"
if kwargs.get("precision") == "16-mixed" and not using_deepspeed:
saved_ckpt[trainer.precision_plugin.__class__.__qualname__] = ANY
device = trainer.strategy.root_device
expected = [
{"name": "configure_callbacks"},
{"name": "prepare_data"},
{"name": "Callback.setup", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "setup", "kwargs": {"stage": "fit"}},
# DeepSpeed needs the batch size to figure out throughput logging
*([{"name": "train_dataloader"}] if using_deepspeed else []),
{"name": "configure_model"},
{"name": "configure_optimizers"},
{"name": "Callback.on_fit_start", "args": (trainer, model)},
{"name": "on_fit_start"},
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
{"name": "Callback.on_sanity_check_start", "args": (trainer, model)},
{"name": "val_dataloader"},
{"name": "train", "args": (False,)},
{"name": "on_validation_model_eval"},
{"name": "Callback.on_validation_start", "args": (trainer, model)},
{"name": "on_validation_start"},
*model._eval_epoch("validation", trainer, model, val_batches, "x", device=device),
{"name": "Callback.on_validation_end", "args": (trainer, model)},
{"name": "on_validation_end"},
*([{"name": "on_validation_model_train"}] if override_on_validation_model_train else []),
{"name": "Callback.on_sanity_check_end", "args": (trainer, model)},
{"name": "train_dataloader"},
{"name": "Callback.on_train_start", "args": (trainer, model)},
{"name": "on_train_start"},
{"name": "Callback.on_train_epoch_start", "args": (trainer, model)},
{"name": "on_train_epoch_start"},
*model._train_batch(trainer, model, train_batches, device=device, **kwargs),
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
{"name": "on_validation_model_zero_grad"},
{"name": "train", "args": (False,)},
{"name": "on_validation_model_eval"},
{"name": "Callback.on_validation_start", "args": (trainer, model)},
{"name": "on_validation_start"},
*model._eval_epoch("validation", trainer, model, val_batches, "x", device=device),
{"name": "Callback.on_validation_end", "args": (trainer, model)},
{"name": "on_validation_end"},
*([{"name": "on_validation_model_train"}] if override_on_validation_model_train else []),
{"name": "Callback.on_train_epoch_end", "args": (trainer, model)},
{"name": "on_train_epoch_end"}, # before ModelCheckpoint because it's a "monitoring callback"
# `ModelCheckpoint.save_checkpoint` is called here
{"name": "Callback.state_dict"},
{"name": "Callback.on_save_checkpoint", "args": (trainer, model, saved_ckpt)},
{"name": "on_save_checkpoint", "args": (saved_ckpt,)},
{"name": "Callback.on_train_end", "args": (trainer, model)},
{"name": "on_train_end"},
{"name": "Callback.on_fit_end", "args": (trainer, model)},
{"name": "on_fit_end"},
{"name": "Callback.teardown", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "teardown", "kwargs": {"stage": "fit"}},
]
assert called == expected
def test_trainer_model_hook_system_fit_no_val_and_resume_max_epochs(tmpdir):
# initial training to get a checkpoint
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=2,
limit_val_batches=0,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[HookedCallback([])],
)
trainer.fit(model)
best_model_path = trainer.checkpoint_callback.best_model_path
called = []
callback = HookedCallback(called)
# already performed 1 step, resume and do 2 more
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=2,
limit_val_batches=0,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[callback],
)
# resume from checkpoint with HookedModel
model = HookedModel(called)
trainer.fit(model, ckpt_path=best_model_path)
loaded_ckpt = {
"callbacks": ANY,
"epoch": 0,
"global_step": 2,
"lr_schedulers": ANY,
"optimizer_states": ANY,
"pytorch-lightning_version": __version__,
"state_dict": ANY,
"loops": ANY,
}
saved_ckpt = {**loaded_ckpt, "global_step": 4, "epoch": 1}
expected = [
{"name": "configure_callbacks"},
{"name": "prepare_data"},
{"name": "Callback.setup", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "setup", "kwargs": {"stage": "fit"}},
{"name": "configure_model"},
{"name": "on_load_checkpoint", "args": (loaded_ckpt,)},
{"name": "Callback.on_load_checkpoint", "args": (trainer, model, loaded_ckpt)},
{"name": "Callback.load_state_dict", "args": ({"foo": True},)},
{"name": "configure_optimizers"},
{"name": "Callback.on_fit_start", "args": (trainer, model)},
{"name": "on_fit_start"},
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
{"name": "train_dataloader"},
{"name": "Callback.on_train_start", "args": (trainer, model)},
{"name": "on_train_start"},
{"name": "Callback.on_train_epoch_start", "args": (trainer, model)},
{"name": "on_train_epoch_start"},
*model._train_batch(trainer, model, 2, trainer.strategy.root_device, current_epoch=1, current_batch=0),
{"name": "Callback.on_train_epoch_end", "args": (trainer, model)},
{"name": "on_train_epoch_end"}, # before ModelCheckpoint because it's a "monitoring callback"
# `ModelCheckpoint.save_checkpoint` is called here
{"name": "Callback.state_dict"},
{"name": "Callback.on_save_checkpoint", "args": (trainer, model, saved_ckpt)},
{"name": "on_save_checkpoint", "args": (saved_ckpt,)},
{"name": "Callback.on_train_end", "args": (trainer, model)},
{"name": "on_train_end"},
{"name": "Callback.on_fit_end", "args": (trainer, model)},
{"name": "on_fit_end"},
{"name": "Callback.teardown", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "teardown", "kwargs": {"stage": "fit"}},
]
assert called == expected
def test_trainer_model_hook_system_fit_no_val_and_resume_max_steps(tmpdir):
# initial training to get a checkpoint
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
limit_val_batches=0,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[HookedCallback([])],
)
trainer.fit(model)
best_model_path = trainer.checkpoint_callback.best_model_path
# resume from checkpoint with HookedModel
called = []
model = HookedModel(called)
callback = HookedCallback(called)
# already performed 1 step, resume and do 2 more
train_batches = 2
steps_after_reload = 1 + train_batches
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=steps_after_reload,
limit_val_batches=0,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[callback],
)
trainer.fit(model, ckpt_path=best_model_path)
loaded_ckpt = {
"callbacks": ANY,
"epoch": 0,
"global_step": 1,
"lr_schedulers": ANY,
"optimizer_states": ANY,
"pytorch-lightning_version": __version__,
"state_dict": ANY,
"loops": ANY,
}
saved_ckpt = {**loaded_ckpt, "global_step": steps_after_reload}
expected = [
{"name": "configure_callbacks"},
{"name": "prepare_data"},
{"name": "Callback.setup", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "setup", "kwargs": {"stage": "fit"}},
{"name": "configure_model"},
{"name": "on_load_checkpoint", "args": (loaded_ckpt,)},
{"name": "Callback.on_load_checkpoint", "args": (trainer, model, loaded_ckpt)},
{"name": "Callback.load_state_dict", "args": ({"foo": True},)},
{"name": "configure_optimizers"},
{"name": "Callback.on_fit_start", "args": (trainer, model)},
{"name": "on_fit_start"},
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
{"name": "train_dataloader"},
{"name": "Callback.on_train_start", "args": (trainer, model)},
{"name": "on_train_start"},
{"name": "Callback.on_train_epoch_start", "args": (trainer, model)},
{"name": "on_train_epoch_start"},
*model._train_batch(trainer, model, steps_after_reload, trainer.strategy.root_device, current_batch=1),
{"name": "Callback.on_train_epoch_end", "args": (trainer, model)},
{"name": "on_train_epoch_end"}, # before ModelCheckpoint because it's a "monitoring callback"
# `ModelCheckpoint.save_checkpoint` is called here
{"name": "Callback.state_dict"},
{"name": "Callback.on_save_checkpoint", "args": (trainer, model, saved_ckpt)},
{"name": "on_save_checkpoint", "args": (saved_ckpt,)},
{"name": "Callback.on_train_end", "args": (trainer, model)},
{"name": "on_train_end"},
{"name": "Callback.on_fit_end", "args": (trainer, model)},
{"name": "on_fit_end"},
{"name": "Callback.teardown", "args": (trainer, model), "kwargs": {"stage": "fit"}},
{"name": "teardown", "kwargs": {"stage": "fit"}},
]
assert called == expected
@pytest.mark.parametrize("batches", [0, 2])
@pytest.mark.parametrize(
("verb", "noun", "dataloader", "key"), [("validate", "validation", "val", "x"), ("test", "test", "test", "y")]
)
@pytest.mark.parametrize("override_on_x_model_train", [True, False])
def test_trainer_model_hook_system_eval(tmpdir, override_on_x_model_train, batches, verb, noun, dataloader, key):
called = []
model = HookedModel(called)
if not override_on_x_model_train:
setattr(model, f"on_{noun}_model_train", None)
assert is_overridden(f"on_{noun}_model_train", model) == override_on_x_model_train
callback = HookedCallback(called)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=batches,
limit_test_batches=batches,
enable_progress_bar=False,
enable_model_summary=False,
callbacks=[callback],
)
fn = getattr(trainer, verb)
fn(model, verbose=False)
hooks = [
{"name": f"{dataloader}_dataloader"},
{"name": "train", "args": (False,)},
{"name": f"on_{noun}_model_eval"},
{"name": f"Callback.on_{noun}_start", "args": (trainer, model)},
{"name": f"on_{noun}_start"},
*model._eval_epoch(noun, trainer, model, batches, key, trainer.strategy.root_device),
{"name": f"Callback.on_{noun}_end", "args": (trainer, model)},
{"name": f"on_{noun}_end"},
*([{"name": f"on_{noun}_model_train"}] if override_on_x_model_train else []),
]
expected = [
{"name": "configure_callbacks"},
{"name": "prepare_data"},
{"name": "Callback.setup", "args": (trainer, model), "kwargs": {"stage": verb}},
{"name": "setup", "kwargs": {"stage": verb}},
{"name": "configure_model"},
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
*(hooks if batches else []),
{"name": "Callback.teardown", "args": (trainer, model), "kwargs": {"stage": verb}},
{"name": "teardown", "kwargs": {"stage": verb}},
]
assert called == expected
def test_trainer_model_hook_system_predict(tmpdir):
called = []
model = HookedModel(called)
callback = HookedCallback(called)
batches = 2
trainer = Trainer(
default_root_dir=tmpdir, limit_predict_batches=batches, enable_progress_bar=False, callbacks=[callback]
)
trainer.predict(model)
expected = [
{"name": "configure_callbacks"},
{"name": "prepare_data"},
{"name": "Callback.setup", "args": (trainer, model), "kwargs": {"stage": "predict"}},
{"name": "setup", "kwargs": {"stage": "predict"}},
{"name": "configure_model"},
{"name": "zero_grad", **({} if _TORCH_GREATER_EQUAL_2_0 else {"kwargs": {"set_to_none": True}})},
{"name": "predict_dataloader"},
{"name": "train", "args": (False,)},
{"name": "on_predict_model_eval"},
{"name": "Callback.on_predict_start", "args": (trainer, model)},
{"name": "on_predict_start"},
{"name": "Callback.on_predict_epoch_start", "args": (trainer, model)},
{"name": "on_predict_epoch_start"},
*model._predict_batch(trainer, model, batches, trainer.strategy.root_device),
{"name": "Callback.on_predict_epoch_end", "args": (trainer, model)},
{"name": "on_predict_epoch_end"},
{"name": "Callback.on_predict_end", "args": (trainer, model)},
{"name": "on_predict_end"},
# TODO: `on_predict_model_train`
{"name": "Callback.teardown", "args": (trainer, model), "kwargs": {"stage": "predict"}},
{"name": "teardown", "kwargs": {"stage": "predict"}},
]
assert called == expected
def test_hooks_with_different_argument_names(tmpdir):
"""Test that argument names can be anything in the hooks."""
class CustomBoringModel(BoringModel):
def assert_args(self, x, batch_nb):
assert isinstance(x, Tensor)
assert x.size() == (1, 32)
assert isinstance(batch_nb, int)
def training_step(self, x1, batch_nb1):
self.assert_args(x1, batch_nb1)
return super().training_step(x1, batch_nb1)
def validation_step(self, x2, batch_nb2):
self.assert_args(x2, batch_nb2)
return super().validation_step(x2, batch_nb2)
# we don't support a different name for `dataloader_idx`
def test_step(self, x3, batch_nb3, dataloader_idx):
self.assert_args(x3, batch_nb3)
assert isinstance(dataloader_idx, int)
return super().test_step(x3, batch_nb3)
# we don't support a different name for `dataloader_idx`
def predict_step(self, x4, batch_nb4, dataloader_idx):
self.assert_args(x4, batch_nb4)
assert isinstance(dataloader_idx, int)
return super().predict_step(x4, batch_nb4, dataloader_idx)
def test_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
def predict_dataloader(self):
return [DataLoader(RandomDataset(32, 64)), DataLoader(RandomDataset(32, 64))]
model = CustomBoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=5)
trainer.fit(model)
trainer.test(model)
preds = trainer.predict(model)
assert len(preds) == 2
assert all(len(x) == 5 for x in preds)
def test_trainer_datamodule_hook_system(tmpdir):
"""Test the LightningDataModule hook system."""
model = BoringModel()
batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=batches,
limit_val_batches=batches,
limit_test_batches=batches,
limit_predict_batches=batches,
enable_progress_bar=False,
enable_model_summary=False,
reload_dataloaders_every_n_epochs=1,
)
called = []
dm = HookedDataModule(called)
trainer.fit(model, datamodule=dm)
expected = [
{"name": "prepare_data"},
{"name": "setup", "kwargs": {"stage": "fit"}},
{"name": "val_dataloader"},
{"name": "train_dataloader"},
{"name": "state_dict"},
{"name": "teardown", "kwargs": {"stage": "fit"}},
]
assert called == expected
called = []
dm = HookedDataModule(called)
trainer.validate(model, datamodule=dm, verbose=False)
expected = [
{"name": "prepare_data"},
{"name": "setup", "kwargs": {"stage": "validate"}},
{"name": "val_dataloader"},
{"name": "teardown", "kwargs": {"stage": "validate"}},
]
assert called == expected
called = []
dm = HookedDataModule(called)
trainer.test(model, datamodule=dm, verbose=False)
expected = [
{"name": "prepare_data"},
{"name": "setup", "kwargs": {"stage": "test"}},
{"name": "test_dataloader"},
{"name": "teardown", "kwargs": {"stage": "test"}},
]
assert called == expected
called = []
dm = HookedDataModule(called)
trainer.predict(model, datamodule=dm)
expected = [
{"name": "prepare_data"},
{"name": "setup", "kwargs": {"stage": "predict"}},
{"name": "predict_dataloader"},
{"name": "teardown", "kwargs": {"stage": "predict"}},
]
assert called == expected
@pytest.mark.parametrize("override_configure_model", [True, False])
def test_load_from_checkpoint_hook_calls(override_configure_model, tmpdir):
class CustomHookedDataModule(HookedDataModule):
def state_dict(self):
return {"foo": "bar"}
class CustomHookedModel(HookedModel):
pass
if not override_configure_model:
CustomHookedModel.configure_model = None
lm_called, ldm_called = [], []
model = CustomHookedModel(lm_called)
assert is_overridden("configure_model", model) == override_configure_model
datamodule = CustomHookedDataModule(ldm_called)
trainer = Trainer()
trainer.strategy.connect(model)
trainer._data_connector.attach_data(model, datamodule=datamodule)
ckpt_path = str(tmpdir / "file.ckpt")
trainer.save_checkpoint(ckpt_path)
datamodule_state_dict_key = datamodule.__class__.__qualname__
saved_ckpt = {
"callbacks": ANY,
"epoch": 0,
"global_step": 0,
"lr_schedulers": ANY,
"optimizer_states": ANY,
"pytorch-lightning_version": __version__,
"state_dict": ANY,
"loops": ANY,
datamodule_state_dict_key: {"foo": "bar"},
}
assert lm_called == [{"name": "on_save_checkpoint", "args": (saved_ckpt,)}]
assert ldm_called == [{"name": "state_dict"}]
lm_called, ldm_called = [], []
_ = CustomHookedModel.load_from_checkpoint(ckpt_path, called=lm_called)
_ = CustomHookedDataModule.load_from_checkpoint(ckpt_path, called=ldm_called)
expected_lm_called = [{"name": "configure_model"}] if override_configure_model else []
expected_lm_called += [{"name": "on_load_checkpoint", "args": ({**saved_ckpt, "hyper_parameters": ANY},)}]
assert lm_called == expected_lm_called
assert ldm_called == [{"name": "load_state_dict", "args": (saved_ckpt[datamodule_state_dict_key],)}]
def test_train_eval_mode_restored(tmp_path):
"""Test that the trainer restores the `training` mode of all submodules to what it was before entering the loop."""
class MixedTrainModeModule(BoringModel):
def __init__(self):
super().__init__()
# A frozen submodule should keep its mode, regardless of whether we're training or not
self.frozen = torch.nn.Linear(2, 2)
self.frozen.eval()
self.frozen.requires_grad_(False)
def training_step(self, *args, **kwargs):
assert self.layer.weight.requires_grad
assert self.layer.training
assert not self.frozen.training
assert not self.frozen.weight.requires_grad
return super().training_step(*args, **kwargs)
def validation_step(self, *args, **kwargs):
assert self.layer.weight.requires_grad
assert not self.layer.training
assert not self.frozen.training
assert not self.frozen.weight.requires_grad
return super().validation_step(*args, **kwargs)
def test_step(self, *args, **kwargs):
assert self.layer.weight.requires_grad
assert not self.layer.training
assert not self.frozen.training
assert not self.frozen.weight.requires_grad
return super().test_step(*args, **kwargs)
def predict_step(self, *args, **kwargs):
assert self.layer.weight.requires_grad
assert not self.layer.training
assert not self.frozen.training
assert not self.frozen.weight.requires_grad
return super().predict_step(*args, **kwargs)
model = MixedTrainModeModule()
trainer = Trainer(
default_root_dir=tmp_path,
max_epochs=1,
val_check_interval=1,
limit_train_batches=3,
limit_val_batches=2,
limit_test_batches=2,
limit_predict_batches=2,
enable_progress_bar=False,
enable_model_summary=False,
enable_checkpointing=False,
)
trainer.fit(model)
trainer.validate(model)
trainer.test(model)
trainer.predict(model)