lightning/tests/tests_pytorch/models/test_amp.py

165 lines
5.1 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import pytest
import torch
from lightning.fabric.plugins.environments import SLURMEnvironment
from lightning.pytorch import Trainer
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
from torch.utils.data import DataLoader
import tests_pytorch.helpers.utils as tutils
from tests_pytorch.helpers.runif import RunIf
class AMPTestModel(BoringModel):
def step(self, batch):
self._assert_autocast_enabled()
output = self(batch)
is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed"
assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16
return self.loss(output)
def predict_step(self, batch, batch_idx, dataloader_idx=0):
self._assert_autocast_enabled()
output = self(batch)
is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed"
assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16
return output
def _assert_autocast_enabled(self):
if self.trainer.precision_plugin.device == "cpu":
assert torch.is_autocast_cpu_enabled()
else:
assert torch.is_autocast_enabled()
@pytest.mark.flaky(reruns=3)
@pytest.mark.parametrize(
("strategy", "precision", "devices"),
[
("single_device", "16-mixed", 1),
("single_device", "bf16-mixed", 1),
("ddp_spawn", "16-mixed", 2),
pytest.param("ddp_spawn", "bf16-mixed", 2, marks=RunIf(skip_windows=True)),
],
)
def test_amp_cpus(tmpdir, strategy, precision, devices):
"""Make sure combinations of AMP and strategies work if supported."""
trainer = Trainer(
default_root_dir=tmpdir,
accelerator="cpu",
devices=devices,
strategy=strategy,
precision=precision,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
logger=False,
enable_checkpointing=False,
enable_model_summary=False,
enable_progress_bar=False,
)
model = AMPTestModel()
trainer.fit(model)
trainer.test(model)
trainer.predict(model)
@pytest.mark.parametrize("precision", ["16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True))])
@pytest.mark.parametrize(
"devices", [pytest.param(1, marks=RunIf(min_cuda_gpus=1)), pytest.param(2, marks=RunIf(min_cuda_gpus=2))]
)
def test_amp_gpus(tmpdir, precision, devices):
"""Make sure combinations of AMP and strategies work if supported."""
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
accelerator="gpu",
devices=devices,
strategy=("ddp_spawn" if devices > 1 else "auto"),
precision=precision,
)
model = AMPTestModel()
trainer.fit(model)
trainer.test(model)
trainer.predict(model, DataLoader(RandomDataset(32, 64)))
@RunIf(min_cuda_gpus=1)
@mock.patch.dict(
os.environ,
{
"SLURM_NTASKS": "1",
"SLURM_NTASKS_PER_NODE": "1",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0",
"SLURM_PROCID": "0",
},
)
def test_amp_gpu_ddp_slurm_managed(tmpdir):
"""Make sure DDP + AMP work."""
# simulate setting slurm flags
model = AMPTestModel()
# exp file to get meta
logger = tutils.get_default_logger(tmpdir)
# exp file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
accelerator="gpu",
devices=[0],
strategy="ddp_spawn",
precision="16-mixed",
callbacks=[checkpoint],
logger=logger,
)
trainer.fit(model)
assert isinstance(trainer.strategy.cluster_environment, SLURMEnvironment)
@pytest.mark.parametrize("clip_val", [0, 10])
@mock.patch("torch.nn.utils.clip_grad_norm_")
def test_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir):
"""Ensure that clip gradients is only called if the value is greater than 0."""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
devices=1,
precision="16-mixed",
limit_train_batches=4,
limit_val_batches=0,
gradient_clip_val=clip_val,
)
trainer.fit(model)
if clip_val > 0:
mock_clip_grad_norm.assert_called()
else:
mock_clip_grad_norm.assert_not_called()