215 lines
8.1 KiB
Python
215 lines
8.1 KiB
Python
"""
|
|
Proximal Policy Optimization (PPO) - Accelerated with Lightning Fabric
|
|
|
|
Author: Federico Belotti @belerico
|
|
Adapted from https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
|
|
Based on the paper: https://arxiv.org/abs/1707.06347
|
|
|
|
Requirements:
|
|
- gymnasium[box2d]>=0.27.1
|
|
- moviepy
|
|
- lightning
|
|
- torchmetrics
|
|
- tensorboard
|
|
|
|
|
|
Run it with:
|
|
lightning run model --accelerator=cpu --strategy=ddp --devices=2 train_fabric.py
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import time
|
|
from datetime import datetime
|
|
from typing import Dict
|
|
|
|
import gymnasium as gym
|
|
import torch
|
|
import torchmetrics
|
|
from lightning.fabric import Fabric
|
|
from lightning.fabric.loggers import TensorBoardLogger
|
|
from rl.agent import PPOLightningAgent
|
|
from rl.utils import linear_annealing, make_env, parse_args, test
|
|
from torch import Tensor
|
|
from torch.utils.data import BatchSampler, DistributedSampler, RandomSampler
|
|
|
|
|
|
def train(
|
|
fabric: Fabric,
|
|
agent: PPOLightningAgent,
|
|
optimizer: torch.optim.Optimizer,
|
|
data: Dict[str, Tensor],
|
|
global_step: int,
|
|
args: argparse.Namespace,
|
|
):
|
|
indexes = list(range(data["obs"].shape[0]))
|
|
if args.share_data:
|
|
sampler = DistributedSampler(
|
|
indexes, num_replicas=fabric.world_size, rank=fabric.global_rank, shuffle=True, seed=args.seed
|
|
)
|
|
else:
|
|
sampler = RandomSampler(indexes)
|
|
sampler = BatchSampler(sampler, batch_size=args.per_rank_batch_size, drop_last=False)
|
|
|
|
for epoch in range(args.update_epochs):
|
|
if args.share_data:
|
|
sampler.sampler.set_epoch(epoch)
|
|
for batch_idxes in sampler:
|
|
loss = agent.training_step({k: v[batch_idxes] for k, v in data.items()})
|
|
optimizer.zero_grad(set_to_none=True)
|
|
fabric.backward(loss)
|
|
fabric.clip_gradients(agent, optimizer, max_norm=args.max_grad_norm)
|
|
optimizer.step()
|
|
agent.on_train_epoch_end(global_step)
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
|
run_name = f"{args.env_id}_{args.exp_name}_{args.seed}_{int(time.time())}"
|
|
logger = TensorBoardLogger(
|
|
root_dir=os.path.join("logs", "fabric_logs", datetime.today().strftime("%Y-%m-%d_%H-%M-%S")), name=run_name
|
|
)
|
|
|
|
# Initialize Fabric
|
|
fabric = Fabric(loggers=logger)
|
|
rank = fabric.global_rank
|
|
world_size = fabric.world_size
|
|
device = fabric.device
|
|
fabric.seed_everything(args.seed)
|
|
torch.backends.cudnn.deterministic = args.torch_deterministic
|
|
|
|
# Log hyperparameters
|
|
fabric.logger.experiment.add_text(
|
|
"hyperparameters",
|
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
|
)
|
|
|
|
# Environment setup
|
|
envs = gym.vector.SyncVectorEnv(
|
|
[
|
|
make_env(
|
|
args.env_id, args.seed + rank * args.num_envs + i, rank, args.capture_video, logger.log_dir, "train"
|
|
)
|
|
for i in range(args.num_envs)
|
|
]
|
|
)
|
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
|
|
|
|
# Define the agent and the optimizer and setup them with Fabric
|
|
agent: PPOLightningAgent = PPOLightningAgent(
|
|
envs,
|
|
act_fun=args.activation_function,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
clip_coef=args.clip_coef,
|
|
clip_vloss=args.clip_vloss,
|
|
ortho_init=args.ortho_init,
|
|
normalize_advantages=args.normalize_advantages,
|
|
)
|
|
optimizer = agent.configure_optimizers(args.learning_rate)
|
|
agent, optimizer = fabric.setup(agent, optimizer)
|
|
|
|
# Player metrics
|
|
rew_avg = torchmetrics.MeanMetric().to(device)
|
|
ep_len_avg = torchmetrics.MeanMetric().to(device)
|
|
|
|
# Local data
|
|
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape, device=device)
|
|
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape, device=device)
|
|
logprobs = torch.zeros((args.num_steps, args.num_envs), device=device)
|
|
rewards = torch.zeros((args.num_steps, args.num_envs), device=device)
|
|
dones = torch.zeros((args.num_steps, args.num_envs), device=device)
|
|
values = torch.zeros((args.num_steps, args.num_envs), device=device)
|
|
|
|
# Global variables
|
|
global_step = 0
|
|
start_time = time.time()
|
|
single_global_rollout = int(args.num_envs * args.num_steps * world_size)
|
|
num_updates = args.total_timesteps // single_global_rollout
|
|
|
|
# Get the first environment observation and start the optimization
|
|
next_obs = torch.tensor(envs.reset(seed=args.seed)[0], device=device)
|
|
next_done = torch.zeros(args.num_envs, device=device)
|
|
for update in range(1, num_updates + 1):
|
|
# Learning rate annealing
|
|
if args.anneal_lr:
|
|
linear_annealing(optimizer, update, num_updates, args.learning_rate)
|
|
fabric.log("Info/learning_rate", optimizer.param_groups[0]["lr"], global_step)
|
|
|
|
for step in range(0, args.num_steps):
|
|
global_step += args.num_envs * world_size
|
|
obs[step] = next_obs
|
|
dones[step] = next_done
|
|
|
|
# Sample an action given the observation received by the environment
|
|
with torch.no_grad():
|
|
action, logprob, _, value = agent.get_action_and_value(next_obs)
|
|
values[step] = value.flatten()
|
|
actions[step] = action
|
|
logprobs[step] = logprob
|
|
|
|
# Single environment step
|
|
next_obs, reward, done, truncated, info = envs.step(action.cpu().numpy())
|
|
done = torch.logical_or(torch.tensor(done), torch.tensor(truncated))
|
|
rewards[step] = torch.tensor(reward, device=device).view(-1)
|
|
next_obs, next_done = torch.tensor(next_obs, device=device), done.to(device)
|
|
|
|
if "final_info" in info:
|
|
for i, agent_final_info in enumerate(info["final_info"]):
|
|
if agent_final_info is not None and "episode" in agent_final_info:
|
|
fabric.print(
|
|
f"Rank-0: global_step={global_step}, reward_env_{i}={agent_final_info['episode']['r'][0]}"
|
|
)
|
|
rew_avg(agent_final_info["episode"]["r"][0])
|
|
ep_len_avg(agent_final_info["episode"]["l"][0])
|
|
|
|
# Sync the metrics
|
|
rew_avg_reduced = rew_avg.compute()
|
|
if not rew_avg_reduced.isnan():
|
|
fabric.log("Rewards/rew_avg", rew_avg_reduced, global_step)
|
|
ep_len_avg_reduced = ep_len_avg.compute()
|
|
if not ep_len_avg_reduced.isnan():
|
|
fabric.log("Game/ep_len_avg", ep_len_avg_reduced, global_step)
|
|
rew_avg.reset()
|
|
ep_len_avg.reset()
|
|
|
|
# Estimate returns with GAE (https://arxiv.org/abs/1506.02438)
|
|
returns, advantages = agent.estimate_returns_and_advantages(
|
|
rewards, values, dones, next_obs, next_done, args.num_steps, args.gamma, args.gae_lambda
|
|
)
|
|
|
|
# Flatten the batch
|
|
local_data = {
|
|
"obs": obs.reshape((-1,) + envs.single_observation_space.shape),
|
|
"logprobs": logprobs.reshape(-1),
|
|
"actions": actions.reshape((-1,) + envs.single_action_space.shape),
|
|
"advantages": advantages.reshape(-1),
|
|
"returns": returns.reshape(-1),
|
|
"values": values.reshape(-1),
|
|
}
|
|
|
|
if args.share_data:
|
|
# Gather all the tensors from all the world and reshape them
|
|
gathered_data = fabric.all_gather(local_data)
|
|
for k, v in gathered_data.items():
|
|
if k == "obs":
|
|
gathered_data[k] = v.reshape((-1,) + envs.single_observation_space.shape)
|
|
elif k == "actions":
|
|
gathered_data[k] = v.reshape((-1,) + envs.single_action_space.shape)
|
|
else:
|
|
gathered_data[k] = v.reshape(-1)
|
|
else:
|
|
gathered_data = local_data
|
|
|
|
# Train the agent
|
|
train(fabric, agent, optimizer, gathered_data, global_step, args)
|
|
fabric.log("Time/step_per_second", int(global_step / (time.time() - start_time)), global_step)
|
|
|
|
envs.close()
|
|
if fabric.is_global_zero:
|
|
test(agent.module, device, fabric.logger.experiment, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|