lightning/docs/source-pytorch/upgrade/sections/1_9_advanced.rst

286 lines
12 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. list-table:: adv. user 1.9
:widths: 40 40 20
:header-rows: 1
* - If
- Then
- Ref
* - used the ``pl.lite`` module
- switch to ``lightning_fabric``
- `PR15953`_
* - used Trainers flag ``strategy='dp'``
- use DDP with ``strategy='ddp'`` or DeepSpeed instead
- `PR16748`_
* - implemented ``LightningModule.training_epoch_end`` hooks
- port your logic to ``LightningModule.on_train_epoch_end`` hook
- `PR16520`_
* - implemented ``LightningModule.validation_epoch_end`` hook
- port your logic to ``LightningModule.on_validation_epoch_end`` hook
- `PR16520`_
* - implemented ``LightningModule.test_epoch_end`` hooks
- port your logic to ``LightningModule.on_test_epoch_end`` hook
- `PR16520`_
* - used Trainers flag ``multiple_trainloader_mode``
- switch to ``CombinedLoader(..., mode=...)`` and set mode directly now
- `PR16800`_
* - used Trainers flag ``move_metrics_to_cpu``
- implement particular offload logic in your custom metric or turn it on in ``torchmetrics``
- `PR16358`_
* - used Trainers flag ``track_grad_norm``
- overwrite ``on_before_optimizer_step`` hook and pass the argument directly and ``LightningModule.log_grad_norm()`` hook
- `PR16745`_ `PR16745`_
* - used Trainers flag ``replace_sampler_ddp``
- use ``use_distributed_sampler``; the sampler gets created not only for the DDP strategies
-
* - relied on the ``on_tpu`` argument in ``LightningModule.optimizer_step`` hook
- switch to manual optimization
- `PR16537`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - relied on the ``using_lbfgs`` argument in ``LightningModule.optimizer_step`` hook
- switch to manual optimization
- `PR16538`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - were using ``nvidia/apex`` in any form
- switch to PyTorch native mixed precision ``torch.amp`` instead
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers flag ``using_native_amp``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers flag ``amp_backend``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers flag ``amp_level``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers attribute ``using_native_amp``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers attribute ``amp_backend``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - used Trainers attribute ``amp_level``
- use PyTorch native mixed precision
- `PR16039`_ :doc:`Precision <../../common/precision>`
* - use the ``FairScale`` integration
- consider using PyTorch's native FSDP implementation or outsourced implementation into own project
- `lightning-Fairscale`_
* - used ``pl.overrides.fairscale.LightningShardedDataParallel``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``pl.plugins.precision.fully_sharded_native_amp.FullyShardedNativeMixedPrecisionPlugin``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``pl.plugins.precision.sharded_native_amp.ShardedNativeMixedPrecisionPlugin``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``pl.strategies.fully_sharded.DDPFullyShardedStrategy``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``pl.strategies.sharded.DDPShardedStrategy``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``pl.strategies.sharded_spawn.DDPSpawnShardedStrategy``
- use native FSDP instead
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
* - used ``save_config_overwrite`` parameters in ``LightningCLI``
- pass this option and via dictionary of ``save_config_kwargs`` parameter
- `PR14998`_
* - used ``save_config_multifile`` parameters in ``LightningCLI``
- pass this option and via dictionary of ``save_config_kwargs`` parameter
- `PR14998`_
* - have customized loops ``Loop.replace()``
- implement your training loop with Fabric.
- `PR14998`_ `Fabric`_
* - have customized loops ``Loop.run()``
- implement your training loop with Fabric.
- `PR14998`_ `Fabric`_
* - have customized loops ``Loop.connect()``
- implement your training loop with Fabric.
- `PR14998`_ `Fabric`_
* - used the Trainers ``trainer.fit_loop`` property
- implement your training loop with Fabric
- `PR14998`_ `Fabric`_
* - used the Trainers ``trainer.validate_loop`` property
- implement your training loop with Fabric
- `PR14998`_ `Fabric`_
* - used the Trainers ``trainer.test_loop`` property
- implement your training loop with Fabric
- `PR14998`_ `Fabric`_
* - used the Trainers ``trainer.predict_loop`` property
- implement your training loop with Fabric
- `PR14998`_ `Fabric`_
* - used the ``Trainer.loop`` and fetching classes
- being marked as protected
-
* - used ``opt_idx`` argument in ``BaseFinetuning.finetune_function``
- use manual optimization
- `PR16539`_
* - used ``opt_idx`` argument in ``Callback.on_before_optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` as an optional argument in ``LightningModule.training_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.on_before_optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.configure_gradient_clipping``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.optimizer_zero_grad``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.lr_scheduler_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used declaring optimizer frequencies in the dictionary returned from ``LightningModule.configure_optimizers``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer`` argument in ``LightningModule.backward``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``LightningModule.backward``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.,backward``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``Strategy.backward``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``optimizer_idx`` argument in ``Strategy.optimizer_step``
- use manual optimization
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
* - used Trainers ``Trainer.optimizer_frequencies`` attribute
- use manual optimization
- :doc:`Manual Optimization <../../model/manual_optimization>`
* - used ``PL_INTER_BATCH_PARALLELISM`` environment flag
-
- `PR16355`_
* - used training integration with Horovod
- install standalone package/project
- `lightning-Horovod`_
* - used training integration with ColossalAI
- install standalone package/project
- `lightning-ColossalAI`_
* - used ``QuantizationAwareTraining`` callback
- use Torchs Quantization directly
- `PR16750`_
* - had any logic except reducing the DP outputs in ``LightningModule.training_step_end`` hook
- port it to ``LightningModule.on_train_batch_end`` hook
- `PR16791`_
* - had any logic except reducing the DP outputs in ``LightningModule.validation_step_end`` hook
- port it to ``LightningModule.on_validation_batch_end`` hook
- `PR16791`_
* - had any logic except reducing the DP outputs in ``LightningModule.test_step_end`` hook
- port it to ``LightningModule.on_test_batch_end`` hook
- `PR16791`_
* - used ``pl.strategies.DDPSpawnStrategy``
- switch to general ``DDPStrategy(start_method='spawn')`` with proper starting method
- `PR16809`_
* - used the automatic addition of a moving average of the ``training_step`` loss in the progress bar
- use ``self.log("loss", ..., prog_bar=True)`` instead.
- `PR16192`_
* - rely on the ``outputs`` argument from the ``on_predict_epoch_end`` hook
- access them via ``trainer.predict_loop.predictions``
- `PR16655`_
* - need to pass a dictionary to ``self.log()``
- pass them independently.
- `PR16389`_
.. _Fabric: https://lightning.ai/docs/fabric/
.. _lightning-Horovod: https://github.com/Lightning-AI/lightning-Horovod
.. _lightning-ColossalAI: https://lightning.ai/docs/pytorch/latest/integrations/strategies/colossalai.html
.. _lightning-Fairscale: https://github.com/Lightning-Sandbox/lightning-Fairscale
.. _pr15953: https://github.com/Lightning-AI/lightning/pull/15953
.. _pr16748: https://github.com/Lightning-AI/lightning/pull/16748
.. _pr16520: https://github.com/Lightning-AI/lightning/pull/16520
.. _pr16800: https://github.com/Lightning-AI/lightning/pull/16800
.. _pr16358: https://github.com/Lightning-AI/lightning/pull/16358
.. _pr16745: https://github.com/Lightning-AI/lightning/pull/16745
.. _pr16537: https://github.com/Lightning-AI/lightning/pull/16537
.. _pr16538: https://github.com/Lightning-AI/lightning/pull/16538
.. _pr16039: https://github.com/Lightning-AI/lightning/pull/16039
.. _pr16400: https://github.com/Lightning-AI/lightning/pull/16400
.. _pr14998: https://github.com/Lightning-AI/lightning/pull/14998
.. _pr16539: https://github.com/Lightning-AI/lightning/pull/16539
.. _pr16355: https://github.com/Lightning-AI/lightning/pull/16355
.. _pr16750: https://github.com/Lightning-AI/lightning/pull/16750
.. _pr16791: https://github.com/Lightning-AI/lightning/pull/16791
.. _pr16809: https://github.com/Lightning-AI/lightning/pull/16809
.. _pr16192: https://github.com/Lightning-AI/lightning/pull/16192
.. _pr16655: https://github.com/Lightning-AI/lightning/pull/16655
.. _pr16389: https://github.com/Lightning-AI/lightning/pull/16389