286 lines
12 KiB
ReStructuredText
286 lines
12 KiB
ReStructuredText
.. list-table:: adv. user 1.9
|
||
:widths: 40 40 20
|
||
:header-rows: 1
|
||
|
||
* - If
|
||
- Then
|
||
- Ref
|
||
|
||
* - used the ``pl.lite`` module
|
||
- switch to ``lightning_fabric``
|
||
- `PR15953`_
|
||
|
||
* - used Trainer’s flag ``strategy='dp'``
|
||
- use DDP with ``strategy='ddp'`` or DeepSpeed instead
|
||
- `PR16748`_
|
||
|
||
* - implemented ``LightningModule.training_epoch_end`` hooks
|
||
- port your logic to ``LightningModule.on_train_epoch_end`` hook
|
||
- `PR16520`_
|
||
|
||
* - implemented ``LightningModule.validation_epoch_end`` hook
|
||
- port your logic to ``LightningModule.on_validation_epoch_end`` hook
|
||
- `PR16520`_
|
||
|
||
* - implemented ``LightningModule.test_epoch_end`` hooks
|
||
- port your logic to ``LightningModule.on_test_epoch_end`` hook
|
||
- `PR16520`_
|
||
|
||
* - used Trainer’s flag ``multiple_trainloader_mode``
|
||
- switch to ``CombinedLoader(..., mode=...)`` and set mode directly now
|
||
- `PR16800`_
|
||
|
||
* - used Trainer’s flag ``move_metrics_to_cpu``
|
||
- implement particular offload logic in your custom metric or turn it on in ``torchmetrics``
|
||
- `PR16358`_
|
||
|
||
* - used Trainer’s flag ``track_grad_norm``
|
||
- overwrite ``on_before_optimizer_step`` hook and pass the argument directly and ``LightningModule.log_grad_norm()`` hook
|
||
- `PR16745`_ `PR16745`_
|
||
|
||
* - used Trainer’s flag ``replace_sampler_ddp``
|
||
- use ``use_distributed_sampler``; the sampler gets created not only for the DDP strategies
|
||
-
|
||
|
||
* - relied on the ``on_tpu`` argument in ``LightningModule.optimizer_step`` hook
|
||
- switch to manual optimization
|
||
- `PR16537`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - relied on the ``using_lbfgs`` argument in ``LightningModule.optimizer_step`` hook
|
||
- switch to manual optimization
|
||
- `PR16538`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - were using ``nvidia/apex`` in any form
|
||
- switch to PyTorch native mixed precision ``torch.amp`` instead
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s flag ``using_native_amp``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s flag ``amp_backend``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s flag ``amp_level``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s attribute ``using_native_amp``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s attribute ``amp_backend``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - used Trainer’s attribute ``amp_level``
|
||
- use PyTorch native mixed precision
|
||
- `PR16039`_ :doc:`Precision <../../common/precision>`
|
||
|
||
* - use the ``FairScale`` integration
|
||
- consider using PyTorch's native FSDP implementation or outsourced implementation into own project
|
||
- `lightning-Fairscale`_
|
||
|
||
* - used ``pl.overrides.fairscale.LightningShardedDataParallel``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``pl.plugins.precision.fully_sharded_native_amp.FullyShardedNativeMixedPrecisionPlugin``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``pl.plugins.precision.sharded_native_amp.ShardedNativeMixedPrecisionPlugin``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``pl.strategies.fully_sharded.DDPFullyShardedStrategy``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``pl.strategies.sharded.DDPShardedStrategy``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``pl.strategies.sharded_spawn.DDPSpawnShardedStrategy``
|
||
- use native FSDP instead
|
||
- `PR16400`_ :doc:`FSDP <../../accelerators/gpu_expert>`
|
||
|
||
* - used ``save_config_overwrite`` parameters in ``LightningCLI``
|
||
- pass this option and via dictionary of ``save_config_kwargs`` parameter
|
||
- `PR14998`_
|
||
|
||
* - used ``save_config_multifile`` parameters in ``LightningCLI``
|
||
- pass this option and via dictionary of ``save_config_kwargs`` parameter
|
||
- `PR14998`_
|
||
|
||
* - have customized loops ``Loop.replace()``
|
||
- implement your training loop with Fabric.
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - have customized loops ``Loop.run()``
|
||
- implement your training loop with Fabric.
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - have customized loops ``Loop.connect()``
|
||
- implement your training loop with Fabric.
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - used the Trainer’s ``trainer.fit_loop`` property
|
||
- implement your training loop with Fabric
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - used the Trainer’s ``trainer.validate_loop`` property
|
||
- implement your training loop with Fabric
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - used the Trainer’s ``trainer.test_loop`` property
|
||
- implement your training loop with Fabric
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - used the Trainer’s ``trainer.predict_loop`` property
|
||
- implement your training loop with Fabric
|
||
- `PR14998`_ `Fabric`_
|
||
|
||
* - used the ``Trainer.loop`` and fetching classes
|
||
- being marked as protected
|
||
-
|
||
|
||
* - used ``opt_idx`` argument in ``BaseFinetuning.finetune_function``
|
||
- use manual optimization
|
||
- `PR16539`_
|
||
|
||
* - used ``opt_idx`` argument in ``Callback.on_before_optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` as an optional argument in ``LightningModule.training_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.on_before_optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.configure_gradient_clipping``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.optimizer_zero_grad``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.lr_scheduler_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used declaring optimizer frequencies in the dictionary returned from ``LightningModule.configure_optimizers``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer`` argument in ``LightningModule.backward``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``LightningModule.backward``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.,backward``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``PrecisionPlugin.optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``Strategy.backward``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``optimizer_idx`` argument in ``Strategy.optimizer_step``
|
||
- use manual optimization
|
||
- `PR16539`_ :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used Trainer’s ``Trainer.optimizer_frequencies`` attribute
|
||
- use manual optimization
|
||
- :doc:`Manual Optimization <../../model/manual_optimization>`
|
||
|
||
* - used ``PL_INTER_BATCH_PARALLELISM`` environment flag
|
||
-
|
||
- `PR16355`_
|
||
|
||
* - used training integration with Horovod
|
||
- install standalone package/project
|
||
- `lightning-Horovod`_
|
||
|
||
* - used training integration with ColossalAI
|
||
- install standalone package/project
|
||
- `lightning-ColossalAI`_
|
||
|
||
* - used ``QuantizationAwareTraining`` callback
|
||
- use Torch’s Quantization directly
|
||
- `PR16750`_
|
||
|
||
* - had any logic except reducing the DP outputs in ``LightningModule.training_step_end`` hook
|
||
- port it to ``LightningModule.on_train_batch_end`` hook
|
||
- `PR16791`_
|
||
|
||
* - had any logic except reducing the DP outputs in ``LightningModule.validation_step_end`` hook
|
||
- port it to ``LightningModule.on_validation_batch_end`` hook
|
||
- `PR16791`_
|
||
|
||
* - had any logic except reducing the DP outputs in ``LightningModule.test_step_end`` hook
|
||
- port it to ``LightningModule.on_test_batch_end`` hook
|
||
- `PR16791`_
|
||
|
||
* - used ``pl.strategies.DDPSpawnStrategy``
|
||
- switch to general ``DDPStrategy(start_method='spawn')`` with proper starting method
|
||
- `PR16809`_
|
||
|
||
* - used the automatic addition of a moving average of the ``training_step`` loss in the progress bar
|
||
- use ``self.log("loss", ..., prog_bar=True)`` instead.
|
||
- `PR16192`_
|
||
|
||
* - rely on the ``outputs`` argument from the ``on_predict_epoch_end`` hook
|
||
- access them via ``trainer.predict_loop.predictions``
|
||
- `PR16655`_
|
||
|
||
* - need to pass a dictionary to ``self.log()``
|
||
- pass them independently.
|
||
- `PR16389`_
|
||
|
||
|
||
.. _Fabric: https://lightning.ai/docs/fabric/
|
||
.. _lightning-Horovod: https://github.com/Lightning-AI/lightning-Horovod
|
||
.. _lightning-ColossalAI: https://lightning.ai/docs/pytorch/latest/integrations/strategies/colossalai.html
|
||
.. _lightning-Fairscale: https://github.com/Lightning-Sandbox/lightning-Fairscale
|
||
|
||
.. _pr15953: https://github.com/Lightning-AI/lightning/pull/15953
|
||
.. _pr16748: https://github.com/Lightning-AI/lightning/pull/16748
|
||
.. _pr16520: https://github.com/Lightning-AI/lightning/pull/16520
|
||
.. _pr16800: https://github.com/Lightning-AI/lightning/pull/16800
|
||
.. _pr16358: https://github.com/Lightning-AI/lightning/pull/16358
|
||
.. _pr16745: https://github.com/Lightning-AI/lightning/pull/16745
|
||
.. _pr16537: https://github.com/Lightning-AI/lightning/pull/16537
|
||
.. _pr16538: https://github.com/Lightning-AI/lightning/pull/16538
|
||
.. _pr16039: https://github.com/Lightning-AI/lightning/pull/16039
|
||
.. _pr16400: https://github.com/Lightning-AI/lightning/pull/16400
|
||
.. _pr14998: https://github.com/Lightning-AI/lightning/pull/14998
|
||
.. _pr16539: https://github.com/Lightning-AI/lightning/pull/16539
|
||
.. _pr16355: https://github.com/Lightning-AI/lightning/pull/16355
|
||
.. _pr16750: https://github.com/Lightning-AI/lightning/pull/16750
|
||
.. _pr16791: https://github.com/Lightning-AI/lightning/pull/16791
|
||
.. _pr16809: https://github.com/Lightning-AI/lightning/pull/16809
|
||
.. _pr16192: https://github.com/Lightning-AI/lightning/pull/16192
|
||
.. _pr16655: https://github.com/Lightning-AI/lightning/pull/16655
|
||
.. _pr16389: https://github.com/Lightning-AI/lightning/pull/16389
|