lightning/pytorch_lightning/trainer/evaluation_loop_mixin.py

319 lines
10 KiB
Python

"""
# Validation loop
The lightning validation loop handles everything except the actual computations of your model.
To decide what will happen in your validation loop, define the `validation_step` function.
Below are all the things lightning automates for you in the validation loop.
.. note:: Lightning will run 5 steps of validation in the beginning of training as a sanity
check so you don't have to wait until a full epoch to catch possible validation issues.
Check validation every n epochs
-------------------------------
If you have a small dataset you might want to check validation every n epochs
.. code-block:: python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Set how much of the validation set to check
-------------------------------------------
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag
val_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(val_percent_check=1.0)
# check 10% only
trainer = Trainer(val_percent_check=0.1)
Set how much of the test set to check
-------------------------------------
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag
test_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(test_percent_check=1.0)
# check 10% only
trainer = Trainer(test_percent_check=0.1)
Set validation check frequency within 1 training epoch
------------------------------------------------------
For large datasets it's often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch.
Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Set the number of validation sanity steps
-----------------------------------------
Lightning runs a few steps of validation in the beginning of training.
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
.. code-block:: python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=5)
You can use `Trainer(num_sanity_val_steps=0)` to skip the sanity check.
# Testing loop
To ensure you don't accidentally use test data to guide training decisions Lightning
makes running the test set deliberate.
**test**
You have two options to run the test set.
First case is where you test right after a full training routine.
.. code-block:: python
# run full training
trainer.fit(model)
# run test set
trainer.test()
Second case is where you load a model and run the test set
.. code-block:: python
model = MyLightningModule.load_from_metrics(
weights_path='/path/to/pytorch_checkpoint.ckpt',
tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv',
on_gpu=True,
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
In this second case, the options you pass to trainer will be used when running
the test set (ie: 16-bit, dp, ddp, etc...)
"""
import torch
import sys
import tqdm
from pytorch_lightning.utilities.debugging import MisconfigurationException
class TrainerEvaluationLoopMixin(object):
def evaluate(self, model, dataloaders, max_batches, test=False):
"""
Run evaluation code
:param model: PT model
:param dataloaders: list of PT dataloaders
:param max_batches: Scalar
:param test: boolean
:return:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
# bookkeeping
outputs = []
# run training
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
for batch_idx, batch in enumerate(dataloader):
if batch is None: # pragma: no cover
continue
# stop short when on fast_dev_run (sets max_batch=1)
if batch_idx >= max_batches:
break
# -----------------
# RUN EVALUATION STEP
# -----------------
output = self.evaluation_forward(model,
batch,
batch_idx,
dataloader_idx,
test)
# track outputs for collation
dl_outputs.append(output)
# batch done
if test:
self.test_progress_bar.update(1)
else:
self.val_progress_bar.update(1)
self.main_progress_bar.update(1)
outputs.append(dl_outputs)
eval_results = {}
# with a single dataloader don't pass an array
if len(dataloaders) == 1:
outputs = outputs[0]
# give model a chance to do something with the outputs (and method defined)
model = self.get_model()
if test and self.is_overriden('test_end'):
eval_results = model.test_end(outputs)
elif self.is_overriden('validation_end'):
eval_results = model.validation_end(outputs)
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return eval_results
def run_evaluation(self, test=False):
# when testing make sure user defined a test step
can_run_test_step = False
if test:
can_run_test_step = self.is_overriden('test_step') and self.is_overriden('test_end')
if not can_run_test_step:
m = '''You called .test() without defining a test step or test_end.
Please define and try again'''
raise MisconfigurationException(m)
# validate only if model has validation_step defined
# test only if test_step or validation_step are defined
run_val_step = self.is_overriden('validation_step')
if run_val_step or can_run_test_step:
# hook
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test:
dataloaders = self.get_test_dataloaders()
max_batches = self.num_test_batches
else:
# val
dataloaders = self.get_val_dataloaders()
max_batches = self.num_val_batches
# cap max batches to 1 when using fast_dev_run
if self.fast_dev_run:
max_batches = 1
# init validation or test progress bar
# main progress bar will already be closed when testing so initial position is free
position = 2 * self.process_position + (not test)
desc = 'Testing' if test else 'Validating'
pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position,
disable=not self.show_progress_bar, dynamic_ncols=True,
unit='batch', file=sys.stdout)
setattr(self, f'{"test" if test else "val"}_progress_bar', pbar)
# run evaluation
eval_results = self.evaluate(self.model,
dataloaders,
max_batches,
test)
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(
eval_results)
# add metrics to prog bar
self.add_tqdm_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
# hook
model.on_post_performance_check()
# add model specific metrics
tqdm_metrics = self.training_tqdm_dict
if not test:
self.main_progress_bar.set_postfix(**tqdm_metrics)
# close progress bar
if test:
self.test_progress_bar.close()
else:
self.val_progress_bar.close()
# model checkpointing
if self.proc_rank == 0 and self.checkpoint_callback is not None and not test:
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch,
logs=self.callback_metrics)
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if test and len(self.get_test_dataloaders()) > 1:
args.append(dataloader_idx)
elif not test and len(self.get_val_dataloaders()) > 1:
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp or self.use_ddp2:
output = model(*args)
return output
# single GPU
if self.single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if type(self.data_parallel_device_ids) is list:
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# CPU
if test:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output