319 lines
10 KiB
Python
319 lines
10 KiB
Python
"""
|
|
# Validation loop
|
|
|
|
The lightning validation loop handles everything except the actual computations of your model.
|
|
To decide what will happen in your validation loop, define the `validation_step` function.
|
|
Below are all the things lightning automates for you in the validation loop.
|
|
|
|
.. note:: Lightning will run 5 steps of validation in the beginning of training as a sanity
|
|
check so you don't have to wait until a full epoch to catch possible validation issues.
|
|
|
|
Check validation every n epochs
|
|
-------------------------------
|
|
|
|
If you have a small dataset you might want to check validation every n epochs
|
|
|
|
.. code-block:: python
|
|
|
|
# DEFAULT
|
|
trainer = Trainer(check_val_every_n_epoch=1)
|
|
|
|
Set how much of the validation set to check
|
|
-------------------------------------------
|
|
|
|
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag
|
|
|
|
val_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
|
|
|
|
.. code-block:: python
|
|
|
|
# DEFAULT
|
|
trainer = Trainer(val_percent_check=1.0)
|
|
|
|
# check 10% only
|
|
trainer = Trainer(val_percent_check=0.1)
|
|
|
|
Set how much of the test set to check
|
|
-------------------------------------
|
|
|
|
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag
|
|
|
|
test_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
|
|
|
|
.. code-block:: python
|
|
|
|
# DEFAULT
|
|
trainer = Trainer(test_percent_check=1.0)
|
|
|
|
# check 10% only
|
|
trainer = Trainer(test_percent_check=0.1)
|
|
|
|
Set validation check frequency within 1 training epoch
|
|
------------------------------------------------------
|
|
|
|
For large datasets it's often desirable to check validation multiple times within a training loop.
|
|
Pass in a float to check that often within 1 training epoch.
|
|
Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
|
|
|
|
.. code-block:: python
|
|
|
|
# DEFAULT
|
|
trainer = Trainer(val_check_interval=0.95)
|
|
|
|
# check every .25 of an epoch
|
|
trainer = Trainer(val_check_interval=0.25)
|
|
|
|
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
|
|
trainer = Trainer(val_check_interval=100)
|
|
|
|
|
|
Set the number of validation sanity steps
|
|
-----------------------------------------
|
|
|
|
Lightning runs a few steps of validation in the beginning of training.
|
|
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
|
|
|
|
.. code-block:: python
|
|
|
|
# DEFAULT
|
|
trainer = Trainer(num_sanity_val_steps=5)
|
|
|
|
|
|
You can use `Trainer(num_sanity_val_steps=0)` to skip the sanity check.
|
|
|
|
# Testing loop
|
|
|
|
To ensure you don't accidentally use test data to guide training decisions Lightning
|
|
makes running the test set deliberate.
|
|
|
|
**test**
|
|
|
|
You have two options to run the test set.
|
|
First case is where you test right after a full training routine.
|
|
|
|
.. code-block:: python
|
|
|
|
# run full training
|
|
trainer.fit(model)
|
|
|
|
# run test set
|
|
trainer.test()
|
|
|
|
|
|
Second case is where you load a model and run the test set
|
|
|
|
.. code-block:: python
|
|
|
|
model = MyLightningModule.load_from_metrics(
|
|
weights_path='/path/to/pytorch_checkpoint.ckpt',
|
|
tags_csv='/path/to/test_tube/experiment/version/meta_tags.csv',
|
|
on_gpu=True,
|
|
map_location=None
|
|
)
|
|
|
|
# init trainer with whatever options
|
|
trainer = Trainer(...)
|
|
|
|
# test (pass in the model)
|
|
trainer.test(model)
|
|
|
|
In this second case, the options you pass to trainer will be used when running
|
|
the test set (ie: 16-bit, dp, ddp, etc...)
|
|
|
|
"""
|
|
|
|
|
|
import torch
|
|
import sys
|
|
import tqdm
|
|
|
|
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
|
|
|
|
|
class TrainerEvaluationLoopMixin(object):
|
|
|
|
def evaluate(self, model, dataloaders, max_batches, test=False):
|
|
"""
|
|
Run evaluation code
|
|
:param model: PT model
|
|
:param dataloaders: list of PT dataloaders
|
|
:param max_batches: Scalar
|
|
:param test: boolean
|
|
:return:
|
|
"""
|
|
# enable eval mode
|
|
model.zero_grad()
|
|
model.eval()
|
|
|
|
# copy properties for forward overrides
|
|
self.copy_trainer_model_properties(model)
|
|
|
|
# disable gradients to save memory
|
|
torch.set_grad_enabled(False)
|
|
|
|
# bookkeeping
|
|
outputs = []
|
|
|
|
# run training
|
|
for dataloader_idx, dataloader in enumerate(dataloaders):
|
|
dl_outputs = []
|
|
for batch_idx, batch in enumerate(dataloader):
|
|
|
|
if batch is None: # pragma: no cover
|
|
continue
|
|
|
|
# stop short when on fast_dev_run (sets max_batch=1)
|
|
if batch_idx >= max_batches:
|
|
break
|
|
|
|
# -----------------
|
|
# RUN EVALUATION STEP
|
|
# -----------------
|
|
output = self.evaluation_forward(model,
|
|
batch,
|
|
batch_idx,
|
|
dataloader_idx,
|
|
test)
|
|
|
|
# track outputs for collation
|
|
dl_outputs.append(output)
|
|
|
|
# batch done
|
|
if test:
|
|
self.test_progress_bar.update(1)
|
|
else:
|
|
self.val_progress_bar.update(1)
|
|
self.main_progress_bar.update(1)
|
|
outputs.append(dl_outputs)
|
|
|
|
eval_results = {}
|
|
|
|
# with a single dataloader don't pass an array
|
|
if len(dataloaders) == 1:
|
|
outputs = outputs[0]
|
|
|
|
# give model a chance to do something with the outputs (and method defined)
|
|
model = self.get_model()
|
|
if test and self.is_overriden('test_end'):
|
|
eval_results = model.test_end(outputs)
|
|
elif self.is_overriden('validation_end'):
|
|
eval_results = model.validation_end(outputs)
|
|
|
|
# enable train mode again
|
|
model.train()
|
|
|
|
# enable gradients to save memory
|
|
torch.set_grad_enabled(True)
|
|
|
|
return eval_results
|
|
|
|
def run_evaluation(self, test=False):
|
|
# when testing make sure user defined a test step
|
|
can_run_test_step = False
|
|
if test:
|
|
can_run_test_step = self.is_overriden('test_step') and self.is_overriden('test_end')
|
|
if not can_run_test_step:
|
|
m = '''You called .test() without defining a test step or test_end.
|
|
Please define and try again'''
|
|
raise MisconfigurationException(m)
|
|
|
|
# validate only if model has validation_step defined
|
|
# test only if test_step or validation_step are defined
|
|
run_val_step = self.is_overriden('validation_step')
|
|
|
|
if run_val_step or can_run_test_step:
|
|
|
|
# hook
|
|
model = self.get_model()
|
|
model.on_pre_performance_check()
|
|
|
|
# select dataloaders
|
|
if test:
|
|
dataloaders = self.get_test_dataloaders()
|
|
max_batches = self.num_test_batches
|
|
else:
|
|
# val
|
|
dataloaders = self.get_val_dataloaders()
|
|
max_batches = self.num_val_batches
|
|
|
|
# cap max batches to 1 when using fast_dev_run
|
|
if self.fast_dev_run:
|
|
max_batches = 1
|
|
|
|
# init validation or test progress bar
|
|
# main progress bar will already be closed when testing so initial position is free
|
|
position = 2 * self.process_position + (not test)
|
|
desc = 'Testing' if test else 'Validating'
|
|
pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position,
|
|
disable=not self.show_progress_bar, dynamic_ncols=True,
|
|
unit='batch', file=sys.stdout)
|
|
setattr(self, f'{"test" if test else "val"}_progress_bar', pbar)
|
|
|
|
# run evaluation
|
|
eval_results = self.evaluate(self.model,
|
|
dataloaders,
|
|
max_batches,
|
|
test)
|
|
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(
|
|
eval_results)
|
|
|
|
# add metrics to prog bar
|
|
self.add_tqdm_metrics(prog_bar_metrics)
|
|
|
|
# log metrics
|
|
self.log_metrics(log_metrics, {})
|
|
|
|
# track metrics for callbacks
|
|
self.callback_metrics.update(callback_metrics)
|
|
|
|
# hook
|
|
model.on_post_performance_check()
|
|
|
|
# add model specific metrics
|
|
tqdm_metrics = self.training_tqdm_dict
|
|
if not test:
|
|
self.main_progress_bar.set_postfix(**tqdm_metrics)
|
|
|
|
# close progress bar
|
|
if test:
|
|
self.test_progress_bar.close()
|
|
else:
|
|
self.val_progress_bar.close()
|
|
|
|
# model checkpointing
|
|
if self.proc_rank == 0 and self.checkpoint_callback is not None and not test:
|
|
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch,
|
|
logs=self.callback_metrics)
|
|
|
|
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False):
|
|
# make dataloader_idx arg in validation_step optional
|
|
args = [batch, batch_idx]
|
|
|
|
if test and len(self.get_test_dataloaders()) > 1:
|
|
args.append(dataloader_idx)
|
|
|
|
elif not test and len(self.get_val_dataloaders()) > 1:
|
|
args.append(dataloader_idx)
|
|
|
|
# handle DP, DDP forward
|
|
if self.use_ddp or self.use_dp or self.use_ddp2:
|
|
output = model(*args)
|
|
return output
|
|
|
|
# single GPU
|
|
if self.single_gpu:
|
|
# for single GPU put inputs on gpu manually
|
|
root_gpu = 0
|
|
if type(self.data_parallel_device_ids) is list:
|
|
root_gpu = self.data_parallel_device_ids[0]
|
|
batch = self.transfer_batch_to_gpu(batch, root_gpu)
|
|
args[0] = batch
|
|
|
|
# CPU
|
|
if test:
|
|
output = model.test_step(*args)
|
|
else:
|
|
output = model.validation_step(*args)
|
|
|
|
return output
|