lightning/tests/parity_pytorch/test_sync_batchnorm_parity.py

115 lines
4.3 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler
from lightning.pytorch import LightningModule, seed_everything, Trainer
from parity_pytorch import RunIf
class SyncBNModule(LightningModule):
def __init__(self, batch_size):
super().__init__()
self.batch_size = batch_size
self.bn_layer = nn.BatchNorm1d(1)
self.linear = nn.Linear(1, 10)
self.bn_outputs = []
def on_train_start(self) -> None:
assert isinstance(self.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
def training_step(self, batch, batch_idx):
with torch.no_grad():
out_bn = self.bn_layer(batch)
self.bn_outputs.append(out_bn.detach())
out = self.linear(out_bn)
return out.sum()
def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=0.02)
def train_dataloader(self):
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
# we need to set a distributed sampler ourselves to force shuffle=False
sampler = DistributedSampler(
dataset, num_replicas=self.trainer.world_size, rank=self.trainer.global_rank, shuffle=False
)
return DataLoader(dataset, sampler=sampler, batch_size=self.batch_size)
@RunIf(min_cuda_gpus=2, standalone=True)
def test_sync_batchnorm_parity(tmpdir):
"""Test parity between 1) Training a synced batch-norm layer on 2 GPUs with batch size B per device 2) Training a
batch-norm layer on CPU with twice the batch size."""
seed_everything(3)
# 2 GPUS, batch size = 4 per GPU => total batch size = 8
model = SyncBNModule(batch_size=4)
trainer = Trainer(
default_root_dir=tmpdir,
accelerator="gpu",
strategy="ddp_find_unused_parameters_true",
devices=2,
max_steps=3,
sync_batchnorm=True,
num_sanity_val_steps=0,
use_distributed_sampler=False,
deterministic=True,
benchmark=False,
enable_progress_bar=False,
enable_model_summary=False,
)
trainer.fit(model)
# the strategy is responsible for tearing down the batch norm wrappers
assert not isinstance(model.bn_layer, torch.nn.modules.batchnorm.SyncBatchNorm)
assert isinstance(model.bn_layer, torch.nn.modules.batchnorm._BatchNorm)
bn_outputs = torch.stack(model.bn_outputs) # 2 x 4 x 1 on each GPU
bn_outputs_multi_device = trainer.strategy.all_gather(bn_outputs).cpu() # 2 x 2 x 4 x 1
if trainer.global_rank == 0:
# pretend we are now training on a single GPU/process
# (we are reusing the rank 0 from the previous training)
# 1 GPU, batch size = 8 => total batch size = 8
bn_outputs_single_device = _train_single_process_sync_batchnorm(batch_size=8, num_steps=3)
gpu0_outputs = bn_outputs_multi_device[0] # 2 x 4 x 1
gpu1_outputs = bn_outputs_multi_device[1] # 2 x 4 x 1
slice0 = bn_outputs_single_device[:, 0::2]
slice1 = bn_outputs_single_device[:, 1::2]
assert torch.allclose(gpu0_outputs, slice0)
assert torch.allclose(gpu1_outputs, slice1)
def _train_single_process_sync_batchnorm(batch_size, num_steps):
seed_everything(3)
dataset = torch.arange(64, dtype=torch.float).view(-1, 1)
train_dataloader = DataLoader(dataset, batch_size=batch_size)
model = SyncBNModule(batch_size=batch_size)
optimizer = model.configure_optimizers()
model.train()
for batch_idx, batch in enumerate(train_dataloader):
optimizer.zero_grad()
loss = model.training_step(batch, batch)
loss.backward()
optimizer.step()
if batch_idx == num_steps - 1:
break
return torch.stack(model.bn_outputs) # num_steps x batch_size x 1