211 lines
7.6 KiB
Python
211 lines
7.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest import mock
|
|
from unittest.mock import call, Mock
|
|
|
|
import torch
|
|
from torch.utils.data.dataloader import DataLoader
|
|
from torch.utils.data.sampler import BatchSampler, RandomSampler
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.demos.boring_classes import BoringModel, RandomDataset
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
@mock.patch("pytorch_lightning.loops.dataloader.evaluation_loop.EvaluationLoop._on_evaluation_epoch_end")
|
|
def test_on_evaluation_epoch_end(eval_epoch_end_mock, tmpdir):
|
|
"""Tests that `on_evaluation_epoch_end` is called for `on_validation_epoch_end` and `on_test_epoch_end`
|
|
hooks."""
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=2, enable_model_summary=False
|
|
)
|
|
|
|
trainer.fit(model)
|
|
# sanity + 2 epochs
|
|
assert eval_epoch_end_mock.call_count == 3
|
|
|
|
trainer.test()
|
|
# sanity + 2 epochs + called once for test
|
|
assert eval_epoch_end_mock.call_count == 4
|
|
|
|
|
|
def test_evaluation_loop_sampler_set_epoch_called(tmpdir):
|
|
"""Tests that set_epoch is called on the dataloader's sampler (if any) during training and validation."""
|
|
|
|
def _get_dataloader():
|
|
dataset = RandomDataset(32, 64)
|
|
sampler = RandomSampler(dataset)
|
|
sampler.set_epoch = Mock()
|
|
return DataLoader(dataset, sampler=sampler)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=2,
|
|
enable_model_summary=False,
|
|
enable_checkpointing=False,
|
|
logger=False,
|
|
)
|
|
|
|
train_dataloader = _get_dataloader()
|
|
val_dataloader = _get_dataloader()
|
|
trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
|
|
# One for each epoch
|
|
assert train_dataloader.sampler.set_epoch.call_args_list == [call(0), call(1)]
|
|
# One for each epoch + sanity check
|
|
assert val_dataloader.sampler.set_epoch.call_args_list == [call(0), call(0), call(1)]
|
|
|
|
val_dataloader = _get_dataloader()
|
|
trainer.validate(model, val_dataloader)
|
|
assert val_dataloader.sampler.set_epoch.call_args_list == [call(2)]
|
|
|
|
|
|
def test_evaluation_loop_batch_sampler_set_epoch_called(tmpdir):
|
|
"""Tests that set_epoch is called on the dataloader's batch sampler (if any) during training and validation."""
|
|
|
|
def _get_dataloader():
|
|
dataset = RandomDataset(32, 64)
|
|
sampler = RandomSampler(dataset)
|
|
batch_sampler = BatchSampler(sampler, 2, True)
|
|
batch_sampler.set_epoch = Mock()
|
|
return DataLoader(dataset, batch_sampler=batch_sampler)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=2,
|
|
enable_model_summary=False,
|
|
enable_checkpointing=False,
|
|
logger=False,
|
|
)
|
|
|
|
train_dataloader = _get_dataloader()
|
|
val_dataloader = _get_dataloader()
|
|
trainer.fit(model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader)
|
|
# One for each epoch
|
|
assert train_dataloader.batch_sampler.set_epoch.call_args_list == [call(0), call(1)]
|
|
# One for each epoch + sanity check
|
|
assert val_dataloader.batch_sampler.set_epoch.call_args_list == [call(0), call(0), call(1)]
|
|
|
|
val_dataloader = _get_dataloader()
|
|
trainer.validate(model, val_dataloader)
|
|
assert val_dataloader.batch_sampler.set_epoch.call_args_list == [call(2)]
|
|
|
|
|
|
@mock.patch(
|
|
"pytorch_lightning.trainer.connectors.logger_connector.logger_connector.LoggerConnector.log_eval_end_metrics"
|
|
)
|
|
def test_log_epoch_metrics_before_on_evaluation_end(update_eval_epoch_metrics_mock, tmpdir):
|
|
"""Test that the epoch metrics are logged before the `on_evaluation_end` hook is fired."""
|
|
order = []
|
|
update_eval_epoch_metrics_mock.side_effect = lambda _: order.append("log_epoch_metrics")
|
|
|
|
class LessBoringModel(BoringModel):
|
|
def on_validation_end(self):
|
|
order.append("on_validation_end")
|
|
super().on_validation_end()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1, enable_model_summary=False, num_sanity_val_steps=0)
|
|
trainer.fit(LessBoringModel())
|
|
|
|
assert order == ["log_epoch_metrics", "on_validation_end"]
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
def test_memory_consumption_validation(tmpdir):
|
|
"""Test that the training batch is no longer in GPU memory when running validation.
|
|
|
|
Cannot run with MPS, since there we can only measure shared memory and not dedicated, which device has how much
|
|
memory allocated.
|
|
"""
|
|
|
|
initial_memory = torch.cuda.memory_allocated(0)
|
|
|
|
class BoringLargeBatchModel(BoringModel):
|
|
@property
|
|
def num_params(self):
|
|
return sum(p.numel() for p in self.parameters())
|
|
|
|
def train_dataloader(self):
|
|
# batch target memory >= 100x boring_model size
|
|
batch_size = self.num_params * 100 // 32 + 1
|
|
return DataLoader(RandomDataset(32, 5000), batch_size=batch_size)
|
|
|
|
def val_dataloader(self):
|
|
return self.train_dataloader()
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
|
|
lower = 101 * self.num_params * 4
|
|
upper = 201 * self.num_params * 4
|
|
current = torch.cuda.memory_allocated(0)
|
|
assert lower < current
|
|
assert current - initial_memory < upper
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
# there is a batch and the boring model, but not two batches on gpu, assume 32 bit = 4 bytes
|
|
lower = 101 * self.num_params * 4
|
|
upper = 201 * self.num_params * 4
|
|
current = torch.cuda.memory_allocated(0)
|
|
assert lower < current
|
|
assert current - initial_memory < upper
|
|
return super().validation_step(batch, batch_idx)
|
|
|
|
torch.cuda.empty_cache()
|
|
trainer = Trainer(
|
|
accelerator="gpu",
|
|
devices=1,
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=2,
|
|
enable_model_summary=False,
|
|
)
|
|
trainer.fit(BoringLargeBatchModel())
|
|
|
|
|
|
def test_evaluation_loop_doesnt_store_outputs_if_epoch_end_not_overridden(tmpdir):
|
|
did_assert = False
|
|
|
|
class TestModel(BoringModel):
|
|
def on_test_batch_end(self, outputs, *_):
|
|
# check `test_step` returns something
|
|
assert outputs is not None
|
|
|
|
model = TestModel()
|
|
model.test_epoch_end = None
|
|
assert not is_overridden("test_epoch_end", model)
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=3)
|
|
loop = trainer.test_loop.epoch_loop
|
|
original_advance = loop.advance
|
|
|
|
def assert_on_advance_end(*args, **kwargs):
|
|
original_advance(*args, **kwargs)
|
|
# should be empty
|
|
assert not loop._outputs
|
|
# sanity check
|
|
nonlocal did_assert
|
|
did_assert = True
|
|
|
|
loop.advance = assert_on_advance_end
|
|
trainer.test(model)
|
|
assert did_assert
|