lightning/pytorch_lightning/accelerators/ddp_spawn_backend.py

81 lines
2.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import os
import torch
import torch.multiprocessing as mp
from pytorch_lightning.utilities.distributed import find_free_network_port
from pytorch_lightning.accelerators.ddp_base_backend import DDPBase
class DDPSpawnBackend(DDPBase):
def __init__(self, trainer, nprocs):
super().__init__(trainer)
self.mp_queue = None
self.nprocs = nprocs
def setup(self, model):
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port()))
# pass in a state q
smp = mp.get_context('spawn')
self.mp_queue = smp.SimpleQueue()
self.trainer.model = model
def train(self):
model = self.trainer.model
# train in children process
mp.spawn(self.ddp_train_tmp, nprocs=self.nprocs, args=(self.mp_queue, model,))
# restore main state with best weights
best_path = self.mp_queue.get()
results = self.mp_queue.get()
last_path = self.mp_queue.get()
# recover the weights of the processes trained in the children
self.__recover_child_process_weights(model, best_path, last_path)
return results
def __recover_child_process_weights(self, model, best_path, last_path):
# transfer back the best path to the trainer
if self.trainer.checkpoint_callback:
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also best score
# load last weights
if last_path is not None and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
def set_world_ranks(self, process_idx):
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
def model_to_device(self, model, process_idx, is_master):
gpu_idx = process_idx
self.trainer.root_gpu = gpu_idx
torch.cuda.set_device(self.trainer.root_gpu)
model.cuda(self.trainer.root_gpu)
def get_device_ids(self):
device_ids = [self.trainer.root_gpu]
return device_ids