173 lines
5.9 KiB
Python
173 lines
5.9 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import importlib
|
|
import subprocess
|
|
import sys
|
|
from textwrap import dedent
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
from lightning.pytorch.utilities.imports import _OMEGACONF_AVAILABLE
|
|
from lightning_utilities.core.imports import RequirementCache
|
|
from torch.distributed import is_available
|
|
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
def test_imports():
|
|
try:
|
|
import omegaconf # noqa
|
|
except ModuleNotFoundError:
|
|
assert not _OMEGACONF_AVAILABLE
|
|
else:
|
|
assert _OMEGACONF_AVAILABLE
|
|
|
|
|
|
def _shortcut_patch(orig_fn, shortcut_case, attr_names=None):
|
|
"""Patch a function to return False value in the shortcut case, otherwise return original value."""
|
|
|
|
def new_fn(*args, **kwargs):
|
|
if attr_names is not None:
|
|
# We assume that the first argument is the object to check and therefore values are stored in attributes.
|
|
self = args[0]
|
|
values = tuple(getattr(self, attr_name) for attr_name in attr_names)
|
|
else:
|
|
values = args
|
|
match = True
|
|
for value, case in zip(values, shortcut_case):
|
|
# Go through values passed to the original function and compare them to the shortcut case.
|
|
# We are iterating in case the `shortcut_case` and `args` lengths are different.
|
|
if value != case:
|
|
match = False
|
|
break
|
|
if match: # If all values match the shortcut case, return False to simulate the module not being available.
|
|
return False
|
|
# otherwise return the original value
|
|
return orig_fn(*args, **kwargs)
|
|
|
|
return new_fn
|
|
|
|
|
|
@pytest.fixture()
|
|
def clean_import():
|
|
"""This fixture allows test to import {pytorch_}lightning* modules completely cleanly, regardless of the current
|
|
state of the imported modules.
|
|
|
|
Afterwards, it restores the original state of the modules.
|
|
|
|
"""
|
|
import sys
|
|
|
|
# copy modules to avoid modifying the original
|
|
old_sys_modules = sys.modules
|
|
# remove all *lightning* modules
|
|
new_sys_modules = {key: value for key, value in sys.modules.items() if "lightning" not in key}
|
|
sys.modules = new_sys_modules # replace sys.modules with the new one
|
|
yield
|
|
sys.modules = old_sys_modules # restore original modules
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("patch_name", "new_fn", "to_import"),
|
|
[
|
|
pytest.param(
|
|
"torch.distributed.is_available", _shortcut_patch(is_available, ()), "lightning.pytorch", id="ProcessGroup"
|
|
),
|
|
pytest.param(
|
|
"lightning_utilities.core.imports.RequirementCache.__bool__",
|
|
_shortcut_patch(RequirementCache.__bool__, ("neptune",), ("requirement",)),
|
|
"lightning.pytorch.loggers.neptune",
|
|
id="neptune",
|
|
),
|
|
pytest.param(
|
|
"lightning_utilities.core.imports.RequirementCache.__bool__",
|
|
_shortcut_patch(RequirementCache.__bool__, ("jsonargparse[signatures]>=4.12.0",), ("requirement",)),
|
|
"lightning.pytorch.cli",
|
|
id="cli",
|
|
),
|
|
],
|
|
)
|
|
def test_import_with_unavailable_dependencies(patch_name, new_fn, to_import, clean_import):
|
|
"""This tests simulates unavailability of certain modules by patching the functions that check for their
|
|
availability.
|
|
|
|
When the patch is applied and the module is imported, it should not raise any errors. The list of cases to check was
|
|
compiled by finding else branches of top-level if statements checking for the availability of the module and
|
|
performing imports.
|
|
|
|
"""
|
|
with mock.patch(patch_name, new=new_fn):
|
|
importlib.import_module(to_import)
|
|
|
|
|
|
def test_import_pytorch_lightning_with_torch_dist_unavailable():
|
|
"""Test that the package can be imported regardless of whether torch.distributed is available."""
|
|
code = dedent(
|
|
"""
|
|
import torch
|
|
|
|
# pretend torch.distributed not available
|
|
for name in list(torch.distributed.__dict__.keys()):
|
|
if not name.startswith("__"):
|
|
delattr(torch.distributed, name)
|
|
|
|
torch.distributed.is_available = lambda: False
|
|
|
|
import lightning.pytorch
|
|
"""
|
|
)
|
|
# run in complete isolation
|
|
assert subprocess.call([sys.executable, "-c", code]) == 0
|
|
|
|
|
|
@RunIf(deepspeed=True)
|
|
def test_import_deepspeed_lazily():
|
|
"""Test that we are importing deepspeed only when necessary."""
|
|
code = dedent(
|
|
"""
|
|
import lightning.pytorch
|
|
import sys
|
|
|
|
assert 'deepspeed' not in sys.modules
|
|
from lightning.pytorch.strategies import DeepSpeedStrategy
|
|
from lightning.pytorch.plugins import DeepSpeedPrecision
|
|
assert 'deepspeed' not in sys.modules
|
|
|
|
import deepspeed
|
|
assert 'deepspeed' in sys.modules
|
|
"""
|
|
)
|
|
# run in complete isolation
|
|
assert subprocess.call([sys.executable, "-c", code]) == 0
|
|
|
|
|
|
@RunIf(min_python="3.9")
|
|
def test_import_lightning_multiprocessing_start_method_not_set():
|
|
"""Regression test for avoiding the lightning import to set the multiprocessing context."""
|
|
package_name = "pytorch_lightning" if "lightning.pytorch" == "pytorch_lightning" else "lightning"
|
|
|
|
# The following would fail with "context has already been set"
|
|
code = dedent(
|
|
f"""
|
|
import sys
|
|
import multiprocessing as mp
|
|
|
|
import {package_name}
|
|
mp.set_start_method("spawn")
|
|
"""
|
|
)
|
|
# run in complete isolation
|
|
assert subprocess.call([sys.executable, "-c", code]) == 0
|