363 lines
13 KiB
Python
363 lines
13 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import signal
|
|
import sys
|
|
import threading
|
|
from functools import partial
|
|
from http.server import SimpleHTTPRequestHandler
|
|
from pathlib import Path
|
|
from typing import List
|
|
from unittest.mock import Mock
|
|
|
|
import lightning.fabric
|
|
import lightning.pytorch
|
|
import pytest
|
|
import torch.distributed
|
|
from lightning.fabric.plugins.environments.lightning import find_free_network_port
|
|
from lightning.fabric.strategies.launchers.subprocess_script import _ChildProcessObserver
|
|
from lightning.fabric.utilities.distributed import _distributed_is_initialized
|
|
from lightning.fabric.utilities.imports import _IS_WINDOWS
|
|
from lightning.pytorch.accelerators import XLAAccelerator
|
|
from lightning.pytorch.trainer.connectors.signal_connector import _SignalConnector
|
|
from tqdm import TMonitor
|
|
|
|
from tests_pytorch import _PATH_DATASETS
|
|
|
|
if sys.version_info >= (3, 9):
|
|
from concurrent.futures.process import _ExecutorManagerThread
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def datadir():
|
|
return Path(_PATH_DATASETS)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def preserve_global_rank_variable():
|
|
"""Ensures that the rank_zero_only.rank global variable gets reset in each test."""
|
|
from lightning.fabric.utilities.rank_zero import rank_zero_only as rank_zero_only_fabric
|
|
from lightning.pytorch.utilities.rank_zero import rank_zero_only as rank_zero_only_pytorch
|
|
from lightning_utilities.core.rank_zero import rank_zero_only as rank_zero_only_utilities
|
|
|
|
functions = (rank_zero_only_pytorch, rank_zero_only_fabric, rank_zero_only_utilities)
|
|
ranks = [getattr(fn, "rank", None) for fn in functions]
|
|
yield
|
|
for fn, rank in zip(functions, ranks):
|
|
if rank is not None:
|
|
setattr(fn, "rank", rank)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def restore_env_variables():
|
|
"""Ensures that environment variables set during the test do not leak out."""
|
|
env_backup = os.environ.copy()
|
|
yield
|
|
leaked_vars = os.environ.keys() - env_backup.keys()
|
|
# restore environment as it was before running the test
|
|
os.environ.clear()
|
|
os.environ.update(env_backup)
|
|
# these are currently known leakers - ideally these would not be allowed
|
|
allowlist = {
|
|
"CUBLAS_WORKSPACE_CONFIG", # enabled with deterministic flag
|
|
"CUDA_DEVICE_ORDER",
|
|
"LOCAL_RANK",
|
|
"NODE_RANK",
|
|
"WORLD_SIZE",
|
|
"MASTER_ADDR",
|
|
"MASTER_PORT",
|
|
"PL_GLOBAL_SEED",
|
|
"PL_SEED_WORKERS",
|
|
"WANDB_MODE",
|
|
"WANDB_REQUIRE_SERVICE",
|
|
"WANDB_SERVICE",
|
|
"RANK", # set by DeepSpeed
|
|
"CUDA_MODULE_LOADING", # leaked by PyTorch
|
|
"KMP_INIT_AT_FORK", # leaked by PyTorch
|
|
"KMP_DUPLICATE_LIB_OK", # leaked by PyTorch
|
|
"CRC32C_SW_MODE", # leaked by tensorboardX
|
|
"TRITON_CACHE_DIR", # leaked by torch.compile
|
|
"OMP_NUM_THREADS", # set by our launchers
|
|
# leaked by XLA
|
|
"ALLOW_MULTIPLE_LIBTPU_LOAD",
|
|
"GRPC_VERBOSITY",
|
|
"TF_CPP_MIN_LOG_LEVEL",
|
|
"TF_GRPC_DEFAULT_OPTIONS",
|
|
"XLA_FLAGS",
|
|
}
|
|
leaked_vars.difference_update(allowlist)
|
|
assert not leaked_vars, f"test is leaking environment variable(s): {set(leaked_vars)}"
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def restore_signal_handlers():
|
|
"""Ensures that signal handlers get restored before the next test runs.
|
|
|
|
This is a safety net for tests that don't run Trainer's teardown.
|
|
|
|
"""
|
|
valid_signals = _SignalConnector._valid_signals()
|
|
if not _IS_WINDOWS:
|
|
# SIGKILL and SIGSTOP are not allowed to be modified by the user
|
|
valid_signals -= {signal.SIGKILL, signal.SIGSTOP}
|
|
handlers = {signum: signal.getsignal(signum) for signum in valid_signals}
|
|
yield
|
|
for signum, handler in handlers.items():
|
|
if handler is not None:
|
|
signal.signal(signum, handler)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def teardown_process_group():
|
|
"""Ensures that the distributed process group gets closed before the next test runs."""
|
|
yield
|
|
if _distributed_is_initialized():
|
|
torch.distributed.destroy_process_group()
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def reset_deterministic_algorithm():
|
|
"""Ensures that torch determinism settings are reset before the next test runs."""
|
|
yield
|
|
torch.use_deterministic_algorithms(False)
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def thread_police_duuu_daaa_duuu_daaa():
|
|
"""Attempts to stop left-over threads to avoid test interactions."""
|
|
active_threads_before = set(threading.enumerate())
|
|
yield
|
|
active_threads_after = set(threading.enumerate())
|
|
|
|
if XLAAccelerator.is_available():
|
|
# Ignore the check when running XLA tests for now
|
|
return
|
|
|
|
for thread in active_threads_after - active_threads_before:
|
|
stop = getattr(thread, "stop", None) or getattr(thread, "exit", None)
|
|
if thread.daemon and callable(stop):
|
|
# A daemon thread would anyway be stopped at the end of a program
|
|
# We do it preemptively here to reduce the risk of interactions with other tests that run after
|
|
stop()
|
|
assert not thread.is_alive()
|
|
elif isinstance(thread, _ChildProcessObserver):
|
|
thread.join(timeout=10)
|
|
elif thread.name == "QueueFeederThread": # tensorboardX
|
|
thread.join(timeout=20)
|
|
elif isinstance(thread, TMonitor):
|
|
thread.exit()
|
|
elif (
|
|
sys.version_info >= (3, 9)
|
|
and isinstance(thread, _ExecutorManagerThread)
|
|
or "ThreadPoolExecutor-" in thread.name
|
|
):
|
|
# probably `torch.compile`, can't narrow it down further
|
|
continue
|
|
elif thread.name == "fsspecIO":
|
|
continue
|
|
else:
|
|
raise AssertionError(f"Test left zombie thread: {thread}")
|
|
|
|
|
|
def mock_cuda_count(monkeypatch, n: int) -> None:
|
|
monkeypatch.setattr(lightning.fabric.accelerators.cuda, "num_cuda_devices", lambda: n)
|
|
monkeypatch.setattr(lightning.pytorch.accelerators.cuda, "num_cuda_devices", lambda: n)
|
|
|
|
|
|
@pytest.fixture()
|
|
def cuda_count_0(monkeypatch):
|
|
mock_cuda_count(monkeypatch, 0)
|
|
|
|
|
|
@pytest.fixture()
|
|
def cuda_count_1(monkeypatch):
|
|
mock_cuda_count(monkeypatch, 1)
|
|
|
|
|
|
@pytest.fixture()
|
|
def cuda_count_2(monkeypatch):
|
|
mock_cuda_count(monkeypatch, 2)
|
|
|
|
|
|
@pytest.fixture()
|
|
def cuda_count_4(monkeypatch):
|
|
mock_cuda_count(monkeypatch, 4)
|
|
|
|
|
|
def mock_mps_count(monkeypatch, n: int) -> None:
|
|
monkeypatch.setattr(lightning.fabric.accelerators.mps, "_get_all_available_mps_gpus", lambda: [0] if n > 0 else [])
|
|
monkeypatch.setattr(lightning.fabric.accelerators.mps.MPSAccelerator, "is_available", lambda *_: n > 0)
|
|
|
|
|
|
@pytest.fixture()
|
|
def mps_count_0(monkeypatch):
|
|
mock_mps_count(monkeypatch, 0)
|
|
|
|
|
|
@pytest.fixture()
|
|
def mps_count_1(monkeypatch):
|
|
mock_mps_count(monkeypatch, 1)
|
|
|
|
|
|
def mock_xla_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None:
|
|
monkeypatch.setattr(lightning.pytorch.strategies.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.pytorch.strategies.single_xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.pytorch.plugins.precision.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.pytorch.strategies.launchers.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.plugins.environments.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.plugins.io.xla, "_XLA_AVAILABLE", value)
|
|
monkeypatch.setattr(lightning.fabric.strategies.launchers.xla, "_XLA_AVAILABLE", value)
|
|
|
|
|
|
@pytest.fixture()
|
|
def xla_available(monkeypatch: pytest.MonkeyPatch) -> None:
|
|
mock_xla_available(monkeypatch)
|
|
|
|
|
|
def mock_tpu_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None:
|
|
mock_xla_available(monkeypatch, value)
|
|
monkeypatch.setattr(lightning.pytorch.accelerators.xla.XLAAccelerator, "is_available", lambda: value)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "is_available", lambda: value)
|
|
monkeypatch.setattr(lightning.pytorch.accelerators.xla.XLAAccelerator, "auto_device_count", lambda *_: 8)
|
|
monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "auto_device_count", lambda *_: 8)
|
|
monkeypatch.setitem(sys.modules, "torch_xla", Mock())
|
|
monkeypatch.setitem(sys.modules, "torch_xla.core.xla_model", Mock())
|
|
monkeypatch.setitem(sys.modules, "torch_xla.experimental", Mock())
|
|
|
|
|
|
@pytest.fixture()
|
|
def tpu_available(monkeypatch) -> None:
|
|
mock_tpu_available(monkeypatch)
|
|
|
|
|
|
@pytest.fixture()
|
|
def caplog(caplog):
|
|
"""Workaround for https://github.com/pytest-dev/pytest/issues/3697.
|
|
|
|
Setting ``filterwarnings`` with pytest breaks ``caplog`` when ``not logger.propagate``.
|
|
|
|
"""
|
|
import logging
|
|
|
|
root_logger = logging.getLogger()
|
|
root_propagate = root_logger.propagate
|
|
root_logger.propagate = True
|
|
|
|
propagation_dict = {
|
|
name: logging.getLogger(name).propagate
|
|
for name in logging.root.manager.loggerDict
|
|
if name.startswith("lightning.pytorch")
|
|
}
|
|
for name in propagation_dict:
|
|
logging.getLogger(name).propagate = True
|
|
|
|
yield caplog
|
|
|
|
root_logger.propagate = root_propagate
|
|
for name, propagate in propagation_dict.items():
|
|
logging.getLogger(name).propagate = propagate
|
|
|
|
|
|
@pytest.fixture()
|
|
def tmpdir_server(tmpdir):
|
|
Handler = partial(SimpleHTTPRequestHandler, directory=str(tmpdir))
|
|
from http.server import ThreadingHTTPServer
|
|
|
|
with ThreadingHTTPServer(("localhost", 0), Handler) as server:
|
|
server_thread = threading.Thread(target=server.serve_forever)
|
|
# Exit the server thread when the main thread terminates
|
|
server_thread.daemon = True
|
|
server_thread.start()
|
|
yield server.server_address
|
|
server.shutdown()
|
|
|
|
|
|
@pytest.fixture()
|
|
def single_process_pg():
|
|
"""Initialize the default process group with only the current process for testing purposes.
|
|
|
|
The process group is destroyed when the with block is exited.
|
|
|
|
"""
|
|
if _distributed_is_initialized():
|
|
raise RuntimeError("Can't use `single_process_pg` when the default process group is already initialized.")
|
|
|
|
orig_environ = os.environ.copy()
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = str(find_free_network_port())
|
|
os.environ["RANK"] = "0"
|
|
os.environ["WORLD_SIZE"] = "1"
|
|
torch.distributed.init_process_group("gloo")
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.distributed.destroy_process_group()
|
|
os.environ.clear()
|
|
os.environ.update(orig_environ)
|
|
|
|
|
|
def pytest_collection_modifyitems(items: List[pytest.Function], config: pytest.Config) -> None:
|
|
initial_size = len(items)
|
|
conditions = []
|
|
filtered, skipped = 0, 0
|
|
|
|
options = {
|
|
"standalone": "PL_RUN_STANDALONE_TESTS",
|
|
"min_cuda_gpus": "PL_RUN_CUDA_TESTS",
|
|
"tpu": "PL_RUN_TPU_TESTS",
|
|
}
|
|
if os.getenv(options["standalone"], "0") == "1" and os.getenv(options["min_cuda_gpus"], "0") == "1":
|
|
# special case: we don't have a CPU job for standalone tests, so we shouldn't run only cuda tests.
|
|
# by deleting the key, we avoid filtering out the CPU tests
|
|
del options["min_cuda_gpus"]
|
|
|
|
for kwarg, env_var in options.items():
|
|
# this will compute the intersection of all tests selected per environment variable
|
|
if os.getenv(env_var, "0") != "1":
|
|
continue
|
|
conditions.append(env_var)
|
|
for i, test in reversed(list(enumerate(items))): # loop in reverse, since we are going to pop items
|
|
already_skipped = any(marker.name == "skip" for marker in test.own_markers)
|
|
if already_skipped:
|
|
# the test was going to be skipped anyway, filter it out
|
|
items.pop(i)
|
|
skipped += 1
|
|
continue
|
|
has_runif_with_kwarg = any(
|
|
marker.name == "skipif" and marker.kwargs.get(kwarg) for marker in test.own_markers
|
|
)
|
|
if not has_runif_with_kwarg:
|
|
# the test has `@RunIf(kwarg=True)`, filter it out
|
|
items.pop(i)
|
|
filtered += 1
|
|
|
|
if config.option.verbose >= 0 and (filtered or skipped):
|
|
writer = config.get_terminal_writer()
|
|
writer.write(
|
|
f"\nThe number of tests has been filtered from {initial_size} to {initial_size - filtered} after the"
|
|
f" filters {conditions}.\n{skipped} tests are marked as unconditional skips.\nIn total, {len(items)} tests"
|
|
" will run.\n",
|
|
flush=True,
|
|
bold=True,
|
|
purple=True, # oh yeah, branded pytest messages
|
|
)
|
|
|
|
# error out on our deprecation warnings - ensures the code and tests are kept up-to-date
|
|
deprecation_error = pytest.mark.filterwarnings(
|
|
"error::lightning.fabric.utilities.rank_zero.LightningDeprecationWarning",
|
|
)
|
|
for item in items:
|
|
item.add_marker(deprecation_error)
|