lightning/tests/tests_fabric/plugins/precision/test_transformer_engine.py

119 lines
4.7 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import sys
from unittest.mock import Mock
import lightning.fabric
import pytest
import torch
import torch.distributed
from lightning.fabric.connector import _Connector
from lightning.fabric.plugins.precision.transformer_engine import TransformerEnginePrecision
def test_transformer_engine_plugin(monkeypatch):
module = lightning.fabric.plugins.precision.transformer_engine
if module._TRANSFORMER_ENGINE_AVAILABLE:
pytest.skip("Assumes transformer_engine is unavailable")
monkeypatch.setattr(module, "_TRANSFORMER_ENGINE_AVAILABLE", lambda: True)
transformer_engine_mock = Mock()
monkeypatch.setitem(sys.modules, "transformer_engine", transformer_engine_mock)
monkeypatch.setitem(sys.modules, "transformer_engine.pytorch", Mock())
recipe_mock = Mock()
monkeypatch.setitem(sys.modules, "transformer_engine.common.recipe", recipe_mock)
connector = _Connector(precision="transformer-engine")
assert isinstance(connector.precision, TransformerEnginePrecision)
assert connector.precision.weights_dtype is torch.bfloat16
connector = _Connector(precision="transformer-engine-float16")
assert connector.precision.weights_dtype is torch.float16
recipe_mock.reset_mock()
precision = TransformerEnginePrecision(weights_dtype=torch.float32)
connector = _Connector(plugins=precision)
assert connector.precision is precision
assert precision.weights_dtype == torch.float32
recipe_mock.DelayedScaling.assert_called_once_with()
recipe_mock.reset_mock()
recipe = {"foo": 0, "fp8_format": "HYBRID"}
precision = TransformerEnginePrecision(weights_dtype=torch.float16, recipe=recipe)
connector = _Connector(plugins=precision)
assert connector.precision is precision
recipe_mock.DelayedScaling.assert_called_once_with(foo=0, fp8_format=recipe_mock.Format.HYBRID)
assert isinstance(recipe["fp8_format"], str) # not modified
# same logic as in `test_default_dtype_is_restored`
assert torch.get_default_dtype() is torch.float32
with pytest.raises(RuntimeError, match="foo"), precision.module_init_context():
assert torch.get_default_dtype() is not torch.float32
raise RuntimeError("foo")
assert torch.get_default_dtype() is torch.float32
class SubModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.l = torch.nn.Linear(1, 3)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(16, 48)
self.l2 = torch.nn.LayerNorm(1)
self.l3 = SubModule()
model = MyModule()
precision.replace_layers = False
precision.convert_module(model)
assert isinstance(model.l1, torch.nn.Linear)
assert model.l1.weight.dtype == torch.float16
assert isinstance(model.l3.l, torch.nn.Linear)
assert isinstance(model.l2, torch.nn.LayerNorm)
precision.replace_layers = True
setattr_mock = Mock()
model.__setattr__ = setattr_mock
with pytest.warns(match="divisible by 8 and 16"):
precision.convert_module(model)
mock_calls = setattr_mock.mock_calls
assert len(mock_calls) == 2
assert mock_calls[0][1][0] == "l1"
assert mock_calls[1][1][0] == "l2"
assert mock_calls[0][1][1]._extract_mock_name() == "mock.pytorch.Linear()"
assert mock_calls[1][1][1]._extract_mock_name() == "mock.pytorch.LayerNorm()"
precision.replace_layers = False
with precision.module_init_context():
model = MyModule()
assert isinstance(model.l1, torch.nn.Linear)
assert isinstance(model.l2, torch.nn.LayerNorm)
assert isinstance(model.l3.l, torch.nn.Linear)
class TELinearMock(Mock):
...
class TELayerNormMock(Mock):
...
transformer_engine_mock.pytorch.Linear = TELinearMock
transformer_engine_mock.pytorch.LayerNorm = TELayerNormMock
precision.replace_layers = True
with precision.module_init_context():
assert torch.get_default_dtype() == torch.float16
model = MyModule()
assert isinstance(model.l1, TELinearMock)
assert isinstance(model.l2, TELayerNormMock)
assert isinstance(model.l3.l, TELinearMock)