Build and train PyTorch models and connect them to the ML lifecycle using Lightning App templates, without handling DIY infrastructure, cost management, scaling, and other headaches.
Go to file
Akihiro Nitta 64b19fb16f
[App] Introduce auto scaler (#15769)
* Exlucde __pycache__ in setuptools

* Add load balancer example

* wip

* Update example

* rename

* remove prints

* _LoadBalancer -> LoadBalancer

* AutoScaler(work)

* change var name

* remove locust

* Update docs

* include autoscaler in api ref

* docs typo

* docs typo

* docs typo

* docs typo

* remove unused loadtest

* remove unused device_type

* clean up

* clean up

* clean up

* Add docstring

* type

* env vars to args

* expose an API for users to override to customise autoscaling logic

* update example

* comment

* udpate var name

* fix scale mechanism and clean up

* Update exampl

* ignore mypy

* Add test file

* .

* update impl and update tests

* Update changlog

* .

* revert docs

* update test

* update state to keep calling 'flow.run()'

Co-authored-by: Aniket Maurya <theaniketmaurya@gmail.com>

* Add aiohttp to base requirements

* Update docs

Co-authored-by: Luca Antiga <luca.antiga@gmail.com>

* Use deserializer utility

* fake trigger

* wip: protect /system/* with basic auth

* read password at runtime

* Change env var name

* import torch as optional

* Don't overcreate works

* simplify imports

* Update example

* aiohttp

* Add work_args work_kwargs

* More docs

* remove FIXME

* Apply Jirka's suggestions

Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* clean example device

* add comment on init threshold value

* bad merge

* nit: logging format

* {in,out}put_schema -> {in,out}put_type

* lowercase

* docs on seconds

* process_time -> processing_time

* Dont modify work state from flow

* Update tests

* worker_url -> endpoint

* fix exampl

* Fix default scale logic

* Fix default scale logic

* Fix num_pending_works

* Update num_pending_works

* Fix bug creating too many works

* Remove up/downscale_threshold args

* Update example

* Add typing

* Fix example in docstring

* Fix default scale logic

* Update src/lightning_app/components/auto_scaler.py

Co-authored-by: Noha Alon <nohalon@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* rename method

* rename locvar

* Add todo

* docs ci

* docs ci

* asdfafsdasdf pls docs

* Apply suggestions from code review

Co-authored-by: Ethan Harris <ethanwharris@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* .

* doc

* Update src/lightning_app/components/auto_scaler.py

Co-authored-by: Noha Alon <nohalon@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Revert "[pre-commit.ci] auto fixes from pre-commit.com hooks"

This reverts commit 24983a0a5a.

* Revert "Update src/lightning_app/components/auto_scaler.py"

This reverts commit 56ea78b45f.

* Remove redefinition

* Remove load balancer run blocker

* raise RuntimeError

* remove has_sent

* lower the default timeout_batching from 10 to 1

* remove debug

* update the default timeout_batching

* .

* tighten condition

* fix endpoint

* typo in runtimeerror cond

* async lock update severs

* add a test

* {in,out}put_type typing

* Update examples/app_server_with_auto_scaler/app.py

Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>

* Update .actions/setup_tools.py

Co-authored-by: Aniket Maurya <theaniketmaurya@gmail.com>
Co-authored-by: Luca Antiga <luca.antiga@gmail.com>
Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Noha Alon <nohalon@gmail.com>
Co-authored-by: Ethan Harris <ethanwharris@gmail.com>
Co-authored-by: Akihiro Nitta <aki@pop-os.localdomain>
Co-authored-by: thomas chaton <thomas@grid.ai>
2022-12-07 14:27:44 +01:00
.actions Do not modify MANIFEST.in on install (#15646) 2022-11-26 22:27:28 +00:00
.azure [App] Support for headless apps (#15875) 2022-12-05 16:58:22 -05:00
.github CI: parameterize TPU tests (#15876) 2022-12-06 17:00:15 +00:00
_notebooks@6d5634b794 docs updates 1/n (#15473) 2022-11-03 10:55:30 -04:00
dockers CI: parameterize TPU tests (#15876) 2022-12-06 17:00:15 +00:00
docs [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
examples [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
requirements [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
src [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
tests [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
.codecov.yml Make codecov patch threshold 5% 2021-10-29 07:44:05 +00:00
.gitignore PKG: distribute single semver (#15374) 2022-11-12 15:36:36 +00:00
.gitmodules Fix repository links (#13304) 2022-06-15 19:33:43 -04:00
.lightningignore Migrate TPU tests to GitHub actions (#14687) 2022-10-21 20:01:39 +02:00
.pre-commit-config.yaml Update flake8 version (#15816) 2022-11-25 15:20:26 +00:00
.readthedocs.yml Revert "Fix PL docs build on readthedocs.org (#15511)" (#15565) 2022-11-07 11:10:02 +01:00
CITATION.cff Fix repository links (#13304) 2022-06-15 19:33:43 -04:00
LICENSE update nightly & upgrade Twine (#5458) 2021-01-26 14:29:47 +01:00
Makefile remove source-lit docs 2 (#15527) 2022-11-04 18:01:04 +01:00
README.md add contributing guide to readme 2022-11-15 06:03:26 -05:00
SECURITY.md Update Grid links to Lightning AI (#14081) 2022-08-10 09:32:12 -04:00
environment.yml CI: parameterize TPU tests (#15876) 2022-12-06 17:00:15 +00:00
pyproject.toml [App] Introduce auto scaler (#15769) 2022-12-07 14:27:44 +01:00
requirements.txt release App 0.6.0 RC (#14370) 2022-08-23 23:43:27 +02:00
setup.cfg Update flake8 version (#15816) 2022-11-25 15:20:26 +00:00
setup.py Do not modify MANIFEST.in on install (#15646) 2022-11-26 22:27:28 +00:00

README.md

** NEWS: PyTorch Lightning has been renamed Lightning! In addition to building models, you can now build lightning apps that glue together everything around the models, without the pain of infrastructure, cost management, scaling and everything else.**

Build and train PyTorch models and connect them to the ML lifecycle using Lightning App templates, without handling DIY infrastructure, cost management, scaling, and other headaches.


Lightning GalleryKey FeaturesHow To UseDocsExamplesCommunityContributeLicense

PyPI - Python Version PyPI Status PyPI Status Conda DockerHub codecov

ReadTheDocs Slack license

*Codecov is > 90%+ but build delays may show less

PyTorch Lightning is just organized PyTorch

Lightning disentangles PyTorch code to decouple the science from the engineering. PT to PL

Build AI products with Lightning Apps

Once you're done building models, publish a paper demo or build a full production end-to-end ML system with Lightning Apps. Lightning Apps remove the cloud infrastructure boilerplate so you can focus on solving the research or business problems. Lightning Apps can run on the Lightning Cloud, your own cluster or a private cloud.

Browse available Lightning apps here

Learn more about Lightning Apps


Lightning Design Philosophy

Lightning structures PyTorch code with these principles:

Lightning forces the following structure to your code which makes it reusable and shareable:

  • Research code (the LightningModule).
  • Engineering code (you delete, and is handled by the Trainer).
  • Non-essential research code (logging, etc... this goes in Callbacks).
  • Data (use PyTorch DataLoaders or organize them into a LightningDataModule).

Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!

Get started in just 15 minutes


Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs, TPUs, IPUs, and HPUs and against major Python and PyTorch versions.

Current build statuses
System / PyTorch ver. 1.10 1.12
Linux py3.7 [GPUs**] - -
Linux py3.7 [TPUs***] - -
Linux py3.8 [IPUs] - -
Linux py3.8 [HPUs] Build Status -
Linux py3.{7,9} - Test
OSX py3.{7,9} - Test
Windows py3.{7,9} - Test
  • ** tests run on two NVIDIA P100
  • *** tests run on Google GKE TPUv2/3. TPU py3.7 means we support Colab and Kaggle env.

How To Use

Step 0: Install

Simple installation from PyPI

pip install pytorch-lightning
Other installation options

Install with optional dependencies

pip install pytorch-lightning['extra']

Conda

conda install pytorch-lightning -c conda-forge

Install stable version

Install future release from the source

pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/release/stable.zip -U

Install bleeding-edge

Install nightly from the source (no guarantees)

pip install https://github.com/Lightning-AI/lightning/archive/refs/heads/master.zip -U

or from testing PyPI

pip install -iU https://test.pypi.org/simple/ pytorch-lightning

Step 1: Add these imports

import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl

Step 2: Define a LightningModule (nn.Module subclass)

A LightningModule defines a full system (ie: a GAN, autoencoder, BERT or a simple Image Classifier).

class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop. It is independent of forward
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.

Step 3: Train!

dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])

autoencoder = LitAutoEncoder()
trainer = pl.Trainer()
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))

Advanced features

Lightning has over 40+ advanced features designed for professional AI research at scale.

Here are some examples:

Highlighted feature code snippets
# 8 GPUs
# no code changes needed
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8)

# 256 GPUs
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8, num_nodes=32)
Train on TPUs without code changes
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
16-bit precision
# no code changes needed
trainer = Trainer(precision=16)
Experiment managers
from pytorch_lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
EarlyStopping
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
Checkpointing
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
Export to torchscript (JIT) (production use)
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
Export to ONNX (production use)
# onnx
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
    autoencoder = LitAutoEncoder()
    input_sample = torch.randn((1, 64))
    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
    os.path.isfile(tmpfile.name)

Pro-level control of training loops (advanced users)

For complex/professional level work, you have optional full control of the training loop and optimizers.

class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.automatic_optimization = False

    def training_step(self, batch, batch_idx):
        # access your optimizers with use_pl_optimizer=False. Default is True
        opt_a, opt_b = self.optimizers(use_pl_optimizer=True)

        loss_a = ...
        self.manual_backward(loss_a, opt_a)
        opt_a.step()
        opt_a.zero_grad()

        loss_b = ...
        self.manual_backward(loss_b, opt_b, retain_graph=True)
        self.manual_backward(loss_b, opt_b)
        opt_b.step()
        opt_b.zero_grad()

Advantages over unstructured PyTorch

  • Models become hardware agnostic
  • Code is clear to read because engineering code is abstracted away
  • Easier to reproduce
  • Make fewer mistakes because lightning handles the tricky engineering
  • Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
  • Lightning has dozens of integrations with popular machine learning tools.
  • Tested rigorously with every new PR. We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
  • Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

Lightning Lite

In the Lightning v1.5 release, LightningLite now enables you to leverage all the capabilities of PyTorch Lightning Accelerators without any refactoring to your training loop. Check out the blogpost and docs for more info.


Examples

Hello world
Contrastive Learning
NLP
Reinforcement Learning
Vision
Classic ML

Community

The lightning community is maintained by

  • 10+ core contributors who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
  • 590+ active community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers? Learn how to make your first contribution here

Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.

Asking for help

If you have any questions please:

  1. Read the docs.
  2. Search through existing Discussions, or add a new question
  3. Join our slack.