lightning/examples
thomas chaton bd658441bd
[App] testing `lightning` in `lightning-app` package (#15286)
* hot fix

* update

* update

* update

* cmd

* pkg

* update

* Apply suggestions from code review

* update

* update

* Apply suggestions from code review

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* cleaning

* Apply suggestions from code review

* update

* update

Co-authored-by: Jirka <jirka.borovec@seznam.cz>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2022-10-25 09:24:20 -04:00
..
app_argparse Add --app_args support from the CLI (#13625) 2022-07-15 19:12:40 +01:00
app_boring (app) Make Logging DEBUG mode lazy (#14464) 2022-09-12 14:47:24 +00:00
app_commands_and_api [App] Automate missing requirements installation for CLI (#15198) 2022-10-20 15:02:13 -04:00
app_components Resolve s3 drive issue where the root folder doesn't need to exist locally (#15127) 2022-10-18 14:16:18 +01:00
app_dag Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_drive [App] testing `lightning` in `lightning-app` package (#15286) 2022-10-25 09:24:20 -04:00
app_hpo Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_layout [app] Add CloudCompute ID serializable within the flow and works state (#14819) 2022-10-04 19:46:44 +00:00
app_mount Renamed Mount root_dir Argument to mount_path (#15228) 2022-10-20 17:33:35 -04:00
app_multi_node (app) Introduce LightningTrainingComponent (#13830) 2022-07-29 16:44:52 +02:00
app_payload Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_pickle_or_not Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_template_streamlit_ui (app) Make Logging DEBUG mode lazy (#14464) 2022-09-12 14:47:24 +00:00
app_v0 (app) Make Logging DEBUG mode lazy (#14464) 2022-09-12 14:47:24 +00:00
app_works_on_default_machine [app] Add CloudCompute ID serializable within the flow and works state (#14819) 2022-10-04 19:46:44 +00:00
convert_from_pt_to_pl Add backward-compatibility for LightningLite in PL (#14735) 2022-09-20 13:31:56 +02:00
pl_basics Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
pl_bug_report Update old PL links (#13349) 2022-06-21 16:38:04 +02:00
pl_domain_templates Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
pl_fault_tolerant
pl_hpu Promote the CLI out of utilities (#13767) 2022-07-23 12:07:29 +00:00
pl_integrations Promote the CLI out of utilities (#13767) 2022-07-23 12:07:29 +00:00
pl_ipu
pl_loops Fixes to the K-fold loop example (#15225) 2022-10-22 01:13:25 +02:00
pl_servable_module Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
README.md [Docs] Fix README.md in lightning/examples/pl_basics (#13380) 2022-06-30 00:18:07 +09:00
run_ddp_examples.sh
run_pl_examples.sh
test_pl_examples.py

README.md

Examples

Our most robust examples showing all sorts of implementations can be found in our sister library Lightning Bolts.


Note that some examples may rely on new features that are only available in the development branch and may be incompatible with any releases. If you see any errors, you might want to consider switching to a version tag you would like to run examples with. For example, if you're using pytorch-lightning==1.6.4 in your environment and seeing issues, run examples of the tag 1.6.4.


MNIST Examples

5 MNIST examples showing how to gradually convert from pure PyTorch to PyTorch Lightning.

The transition through LightningLite from pure PyTorch is optional, but it might be helpful to learn about it.


Basic Examples

In this folder, we have 2 simple examples:


Domain Examples

This folder contains older examples. You should instead use the examples in Lightning Bolts for advanced use cases.


Basic Examples

In this folder, we have 1 simple example:


Loop examples

Contains implementations leveraging loop customization to enhance the Trainer with new optimization routines.

  • K-fold Cross Validation Loop: Implementation of cross validation in a loop and special datamodule.
  • Yield Loop: Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers.