lightning/tests
Adrian Wälchli 0421f08742
fix optimizer loop with frequencies (#9507)
2021-09-14 21:21:45 +01:00
..
accelerators Keep global step update in the loop (#8856) 2021-09-14 19:21:39 +05:30
base Keep global step update in the loop (#8856) 2021-09-14 19:21:39 +05:30
callbacks feat: Add ModelSummary Callback (#9344) 2021-09-10 12:42:42 +00:00
checkpointing make model checkpointing test deterministic (#9457) 2021-09-13 17:14:40 +05:30
core Add `OutputResult` [1/2] (#9437) 2021-09-14 15:48:27 +02:00
deprecated_api deprecate flush_logs_every_n_steps on Trainer (#9366) 2021-09-14 11:27:56 +01:00
helpers CI: precommit - docformatter (#8584) 2021-09-06 12:49:09 +00:00
loggers deprecate flush_logs_every_n_steps on Trainer (#9366) 2021-09-14 11:27:56 +01:00
loops fix optimizer loop with frequencies (#9507) 2021-09-14 21:21:45 +01:00
models Deprecate LightningModule.get_progress_bar_dict (#8985) 2021-09-09 20:53:47 +00:00
overrides scheduled removal of auto_move_data decorator (#9231) 2021-09-03 00:54:36 +02:00
plugins Introduce parameter to fix deepspeed crash for RNNS (#9489) 2021-09-14 16:46:13 +01:00
profiler CI: precommit - docformatter (#8584) 2021-09-06 12:49:09 +00:00
trainer [bugfix] Always return batch indices to prevent duplicated logic for the users (#9432) 2021-09-14 14:40:19 +00:00
tuner CI: precommit - docformatter (#8584) 2021-09-06 12:49:09 +00:00
utilities add test for model weights equality when fault-tolerant training (#9481) 2021-09-13 12:33:48 +00:00
README.md CI: add mdformat (#8673) 2021-08-03 18:19:09 +00:00
__init__.py Replace `yapf` with `black` (#7783) 2021-07-26 13:37:35 +02:00
conftest.py CI: precommit - docformatter (#8584) 2021-09-06 12:49:09 +00:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh Call any trainer function from the `LightningCLI` (#7508) 2021-08-28 04:43:14 +00:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.9 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.9 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.9 bash
docker image rm pytorch_lightning:devel-torch1.9