111 lines
4.7 KiB
Python
111 lines
4.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from lightning_lite.plugins.environments import LightningEnvironment, SLURMEnvironment, TorchElasticEnvironment
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.strategies import DDPShardedStrategy, DDPStrategy, DeepSpeedStrategy
|
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
def environment_combinations():
|
|
expected = dict(global_rank=3, local_rank=1, node_rank=1, world_size=4)
|
|
# Lightning
|
|
variables = {"CUDA_VISIBLE_DEVICES": "0,1,2,4", "LOCAL_RANK": "1", "NODE_RANK": "1", "WORLD_SIZE": "8"}
|
|
environment = LightningEnvironment()
|
|
yield environment, variables, expected
|
|
# SLURM
|
|
variables = {
|
|
"CUDA_VISIBLE_DEVICES": "0,1,2,4",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_LOCALID": "1",
|
|
"SLURM_NODEID": "1",
|
|
"SLURM_PROCID": "3",
|
|
"SLURM_NTASKS": "4",
|
|
}
|
|
environment = SLURMEnvironment()
|
|
yield environment, variables, expected
|
|
# TorchElastic
|
|
variables = {
|
|
"CUDA_VISIBLE_DEVICES": "0,1,2,4",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "1",
|
|
"RANK": "3",
|
|
"WORLD_SIZE": "4",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
"TORCHELASTIC_RUN_ID": "1",
|
|
}
|
|
environment = TorchElasticEnvironment()
|
|
yield environment, variables, expected
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"strategy_cls",
|
|
[DDPStrategy, DDPShardedStrategy, pytest.param(DeepSpeedStrategy, marks=RunIf(deepspeed=True))],
|
|
)
|
|
@mock.patch("pytorch_lightning.accelerators.cuda.CUDAAccelerator.is_available", return_value=True)
|
|
def test_ranks_available_manual_strategy_selection(mock_gpu_acc_available, strategy_cls):
|
|
"""Test that the rank information is readily available after Trainer initialization."""
|
|
num_nodes = 2
|
|
for cluster, variables, expected in environment_combinations():
|
|
with mock.patch.dict(os.environ, variables):
|
|
strategy = strategy_cls(
|
|
parallel_devices=[torch.device("cuda", 1), torch.device("cuda", 2)], cluster_environment=cluster
|
|
)
|
|
trainer = Trainer(strategy=strategy, num_nodes=num_nodes)
|
|
assert rank_zero_only.rank == expected["global_rank"]
|
|
assert trainer.global_rank == expected["global_rank"]
|
|
assert trainer.local_rank == expected["local_rank"]
|
|
assert trainer.node_rank == expected["node_rank"]
|
|
assert trainer.world_size == expected["world_size"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"trainer_kwargs",
|
|
[
|
|
dict(strategy="ddp", accelerator="gpu", devices=[1, 2]),
|
|
dict(strategy="ddp_sharded", accelerator="gpu", devices=[1, 2]),
|
|
dict(strategy="ddp_spawn", accelerator="cpu", devices=2),
|
|
dict(strategy="ddp_spawn", accelerator="gpu", devices=[1, 2]),
|
|
],
|
|
)
|
|
@mock.patch("lightning_lite.utilities.device_parser.is_cuda_available", return_value=True)
|
|
@mock.patch("lightning_lite.utilities.device_parser.num_cuda_devices", return_value=4)
|
|
def test_ranks_available_automatic_strategy_selection(mock0, mock1, trainer_kwargs):
|
|
"""Test that the rank information is readily available after Trainer initialization."""
|
|
num_nodes = 2
|
|
trainer_kwargs.update(num_nodes=num_nodes)
|
|
|
|
for cluster, variables, expected in environment_combinations():
|
|
if trainer_kwargs["strategy"] == "ddp_spawn":
|
|
if isinstance(cluster, (SLURMEnvironment, TorchElasticEnvironment)):
|
|
# slurm and torchelastic do not work with spawn strategies
|
|
continue
|
|
# when using spawn, we don't reach rank > 0 until we call Trainer.fit()
|
|
expected.update(global_rank=(expected["node_rank"] * 2), local_rank=0)
|
|
|
|
with mock.patch.dict(os.environ, variables):
|
|
trainer = Trainer(**trainer_kwargs)
|
|
assert type(trainer.strategy.cluster_environment) is type(cluster)
|
|
assert rank_zero_only.rank == expected["global_rank"]
|
|
assert trainer.global_rank == expected["global_rank"]
|
|
assert trainer.local_rank == expected["local_rank"]
|
|
assert trainer.node_rank == expected["node_rank"]
|
|
assert trainer.world_size == expected["world_size"]
|