lightning/docs/source-pytorch/common/checkpointing_advanced.rst

76 lines
3.0 KiB
ReStructuredText

.. _checkpointing_advanced:
##################################
Cloud-based checkpoints (advanced)
##################################
*****************
Cloud checkpoints
*****************
Lightning is integrated with the major remote file systems including local filesystems and several cloud storage providers such as
`S3 <https://aws.amazon.com/s3/>`_ on `AWS <https://aws.amazon.com/>`_, `GCS <https://cloud.google.com/storage>`_ on `Google Cloud <https://cloud.google.com/>`_,
or `ADL <https://azure.microsoft.com/solutions/data-lake/>`_ on `Azure <https://azure.microsoft.com/>`_.
PyTorch Lightning uses `fsspec <https://filesystem-spec.readthedocs.io/>`_ internally to handle all filesystem operations.
----
Save a cloud checkpoint
=======================
To save to a remote filesystem, prepend a protocol like "s3:/" to the root_dir used for writing and reading model data.
.. code-block:: python
# `default_root_dir` is the default path used for logs and checkpoints
trainer = Trainer(default_root_dir="s3://my_bucket/data/")
trainer.fit(model)
----
Resume training from a cloud checkpoint
=======================================
To resume training from a cloud checkpoint use a cloud url.
.. code-block:: python
trainer = Trainer(default_root_dir=tmpdir, max_steps=3)
trainer.fit(model, ckpt_path="s3://my_bucket/ckpts/classifier.ckpt")
PyTorch Lightning uses `fsspec <https://filesystem-spec.readthedocs.io/>`_ internally to handle all filesystem operations.
----
***************************
Modularize your checkpoints
***************************
Checkpoints can also save the state of :doc:`datamodules <../extensions/datamodules_state>` and :doc:`callbacks <../extensions/callbacks_state>`.
----
****************************
Modify a checkpoint anywhere
****************************
When you need to change the components of a checkpoint before saving or loading, use the :meth:`~lightning.pytorch.core.hooks.CheckpointHooks.on_save_checkpoint` and :meth:`~lightning.pytorch.core.hooks.CheckpointHooks.on_load_checkpoint` of your ``LightningModule``.
.. code:: python
class LitModel(pl.LightningModule):
def on_save_checkpoint(self, checkpoint):
checkpoint["something_cool_i_want_to_save"] = my_cool_pickable_object
def on_load_checkpoint(self, checkpoint):
my_cool_pickable_object = checkpoint["something_cool_i_want_to_save"]
Use the above approach when you need to couple this behavior to your LightningModule for reproducibility reasons. Otherwise, Callbacks also have the :meth:`~lightning.pytorch.callbacks.callback.Callback.on_save_checkpoint` and :meth:`~lightning.pytorch.callbacks.callback.Callback.on_load_checkpoint` which you should use instead:
.. code:: python
class LitCallback(pl.Callback):
def on_save_checkpoint(self, checkpoint):
checkpoint["something_cool_i_want_to_save"] = my_cool_pickable_object
def on_load_checkpoint(self, checkpoint):
my_cool_pickable_object = checkpoint["something_cool_i_want_to_save"]