202 lines
6.8 KiB
Python
202 lines
6.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Profiler to check if there are any bottlenecks in your code."""
|
|
import logging
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
from contextlib import contextmanager
|
|
from pathlib import Path
|
|
from typing import Any, Callable, Dict, Generator, Iterable, Optional, TextIO, Union
|
|
|
|
from pytorch_lightning.utilities.cloud_io import get_filesystem
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class AbstractProfiler(ABC):
|
|
"""Specification of a profiler."""
|
|
|
|
@abstractmethod
|
|
def start(self, action_name: str) -> None:
|
|
"""Defines how to start recording an action."""
|
|
|
|
@abstractmethod
|
|
def stop(self, action_name: str) -> None:
|
|
"""Defines how to record the duration once an action is complete."""
|
|
|
|
@abstractmethod
|
|
def summary(self) -> str:
|
|
"""Create profiler summary in text format."""
|
|
|
|
@abstractmethod
|
|
def setup(self, **kwargs: Any) -> None:
|
|
"""Execute arbitrary pre-profiling set-up steps as defined by subclass."""
|
|
|
|
@abstractmethod
|
|
def teardown(self, **kwargs: Any) -> None:
|
|
"""Execute arbitrary post-profiling tear-down steps as defined by subclass."""
|
|
|
|
|
|
class BaseProfiler(AbstractProfiler):
|
|
"""If you wish to write a custom profiler, you should inherit from this class."""
|
|
|
|
def __init__(
|
|
self,
|
|
dirpath: Optional[Union[str, Path]] = None,
|
|
filename: Optional[str] = None,
|
|
) -> None:
|
|
self.dirpath = dirpath
|
|
self.filename = filename
|
|
|
|
self._output_file: Optional[TextIO] = None
|
|
self._write_stream: Optional[Callable] = None
|
|
self._local_rank: Optional[int] = None
|
|
self._stage: Optional[str] = None
|
|
|
|
@contextmanager
|
|
def profile(self, action_name: str) -> Generator:
|
|
"""Yields a context manager to encapsulate the scope of a profiled action.
|
|
|
|
Example::
|
|
|
|
with self.profile('load training data'):
|
|
# load training data code
|
|
|
|
The profiler will start once you've entered the context and will automatically
|
|
stop once you exit the code block.
|
|
"""
|
|
try:
|
|
self.start(action_name)
|
|
yield action_name
|
|
finally:
|
|
self.stop(action_name)
|
|
|
|
def profile_iterable(self, iterable: Iterable, action_name: str) -> Generator:
|
|
iterator = iter(iterable)
|
|
while True:
|
|
try:
|
|
self.start(action_name)
|
|
value = next(iterator)
|
|
self.stop(action_name)
|
|
yield value
|
|
except StopIteration:
|
|
self.stop(action_name)
|
|
break
|
|
|
|
def _rank_zero_info(self, *args, **kwargs) -> None:
|
|
if self._local_rank in (None, 0):
|
|
log.info(*args, **kwargs)
|
|
|
|
def _prepare_filename(
|
|
self, action_name: Optional[str] = None, extension: str = ".txt", split_token: str = "-"
|
|
) -> str:
|
|
args = []
|
|
if self._stage is not None:
|
|
args.append(self._stage)
|
|
if self.filename:
|
|
args.append(self.filename)
|
|
if self._local_rank is not None:
|
|
args.append(str(self._local_rank))
|
|
if action_name is not None:
|
|
args.append(action_name)
|
|
filename = split_token.join(args) + extension
|
|
return filename
|
|
|
|
def _prepare_streams(self) -> None:
|
|
if self._write_stream is not None:
|
|
return
|
|
if self.filename:
|
|
filepath = os.path.join(self.dirpath, self._prepare_filename())
|
|
fs = get_filesystem(filepath)
|
|
fs.mkdirs(self.dirpath, exist_ok=True)
|
|
file = fs.open(filepath, "a")
|
|
self._output_file = file
|
|
self._write_stream = file.write
|
|
else:
|
|
self._write_stream = self._rank_zero_info
|
|
|
|
def describe(self) -> None:
|
|
"""Logs a profile report after the conclusion of run."""
|
|
# users might call `describe` directly as the profilers can be used by themselves.
|
|
# to allow this, we open and close the files within this function by calling `_prepare_streams` and `teardown`
|
|
# manually instead of letting the `Trainer` do it through `setup` and `teardown`
|
|
self._prepare_streams()
|
|
summary = self.summary()
|
|
if summary:
|
|
self._write_stream(summary)
|
|
if self._output_file is not None:
|
|
self._output_file.flush()
|
|
self.teardown(stage=self._stage)
|
|
|
|
def _stats_to_str(self, stats: Dict[str, str]) -> str:
|
|
stage = f"{self._stage.upper()} " if self._stage is not None else ""
|
|
output = [stage + "Profiler Report"]
|
|
for action, value in stats.items():
|
|
header = f"Profile stats for: {action}"
|
|
if self._local_rank is not None:
|
|
header += f" rank: {self._local_rank}"
|
|
output.append(header)
|
|
output.append(value)
|
|
return os.linesep.join(output)
|
|
|
|
def setup(
|
|
self, stage: Optional[str] = None, local_rank: Optional[int] = None, log_dir: Optional[str] = None
|
|
) -> None:
|
|
"""Execute arbitrary pre-profiling set-up steps."""
|
|
self._stage = stage
|
|
self._local_rank = local_rank
|
|
self.dirpath = self.dirpath or log_dir
|
|
|
|
def teardown(self, stage: Optional[str] = None) -> None:
|
|
"""Execute arbitrary post-profiling tear-down steps.
|
|
|
|
Closes the currently open file and stream.
|
|
"""
|
|
self._write_stream = None
|
|
if self._output_file is not None:
|
|
self._output_file.close()
|
|
self._output_file = None # can't pickle TextIOWrapper
|
|
|
|
def __del__(self) -> None:
|
|
self.teardown(stage=self._stage)
|
|
|
|
def start(self, action_name: str) -> None:
|
|
raise NotImplementedError
|
|
|
|
def stop(self, action_name: str) -> None:
|
|
raise NotImplementedError
|
|
|
|
def summary(self) -> str:
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def local_rank(self) -> int:
|
|
return 0 if self._local_rank is None else self._local_rank
|
|
|
|
|
|
class PassThroughProfiler(BaseProfiler):
|
|
"""This class should be used when you don't want the (small) overhead of profiling.
|
|
|
|
The Trainer uses this class by default.
|
|
"""
|
|
|
|
def start(self, action_name: str) -> None:
|
|
pass
|
|
|
|
def stop(self, action_name: str) -> None:
|
|
pass
|
|
|
|
def summary(self) -> str:
|
|
return ""
|