lightning/pytorch_lightning/logging/base.py

72 lines
1.7 KiB
Python

from functools import wraps
def rank_zero_only(fn):
"""Decorate a logger method to run it only on the process with rank 0
:param fn: Function to decorate
"""
@wraps(fn)
def wrapped_fn(self, *args, **kwargs):
if self.rank == 0:
fn(self, *args, **kwargs)
return wrapped_fn
class LightningLoggerBase:
"""Base class for experiment loggers"""
def __init__(self):
self._rank = 0
def log_metrics(self, metrics, step_num):
"""Record metrics
:param metric: Dictionary with metric names as keys and measured
quanties as values
:param step_num: Step number at which the metrics should be recorded
"""
raise NotImplementedError()
def log_hyperparams(self, params):
"""Record hyperparameters
:param params: argparse.Namespace containing the hyperparameters
"""
raise NotImplementedError()
def save(self):
"""Save log data"""
pass
def finalize(self, status):
"""Do any processing that is necessary to finalize an experiment
:param status: Status that the experiment finished with (e.g. success, failed, aborted)
"""
pass
def close(self):
"""Do any cleanup that is necessary to close an experiment"""
pass
@property
def rank(self):
"""
Process rank. In general, metrics should only be logged by the process
with rank 0
"""
return self._rank
@rank.setter
def rank(self, value):
"""Set the process rank"""
self._rank = value
@property
def version(self):
"""Return the experiment version"""
return None