lightning/pytorch_lightning/callbacks/pt_callbacks.py

296 lines
11 KiB
Python

import os
import shutil
import warnings
import numpy as np
from pytorch_lightning.pt_overrides.override_data_parallel import LightningDistributedDataParallel
class Callback(object):
"""Abstract base class used to build new callbacks.
# Properties
params: dict. Training parameters
(eg. verbosity, batch size, number of epochs...).
Reference of the model being trained.
The `logs` dictionary that callback methods
take as argument will contain keys for quantities relevant to
the current batch or epoch.
Currently, the `.fit()` method of the `Sequential` model class
will include the following quantities in the `logs` that
it passes to its callbacks:
on_epoch_end: logs include `acc` and `loss`, and
optionally include `val_loss`
(if validation is enabled in `fit`), and `val_acc`
(if validation and accuracy monitoring are enabled).
on_batch_begin: logs include `size`,
the number of samples in the current batch.
on_batch_end: logs include `loss`, and optionally `acc`
(if accuracy monitoring is enabled).
"""
def __init__(self):
self.validation_data = None
self.model = None
def set_params(self, params):
self.params = params
def set_model(self, model):
if type(model) is LightningDistributedDataParallel:
model = model.module
self.model = model
def on_epoch_begin(self, epoch, logs=None):
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None):
pass
def on_batch_end(self, batch, logs=None):
pass
def on_train_begin(self, logs=None):
pass
def on_train_end(self, logs=None):
pass
class EarlyStopping(Callback):
"""Stop training when a monitored quantity has stopped improving.
# Arguments
monitor: quantity to be monitored.
min_delta: minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience: number of epochs with no improvement
after which training will be stopped.
verbose: verbosity mode.
mode: one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
"""
def __init__(self, monitor='val_loss',
min_delta=0.0, patience=0, verbose=0, mode='auto'):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.min_delta = min_delta
self.wait = 0
self.stopped_epoch = 0
if mode not in ['auto', 'min', 'max']:
print('EarlyStopping mode %s is unknown, fallback to auto mode.' % mode)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
self.on_train_begin()
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
stop_training = False
if current is None:
print('Early stopping conditioned on metric `%s` '
'which is not available. Available metrics are: %s' %
(self.monitor, ','.join(list(logs.keys()))), RuntimeWarning)
exit(-1)
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
stop_training = True
self.on_train_end()
return stop_training
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))
class ModelCheckpoint(Callback):
"""Save the model after every epoch.
`filepath` can contain named formatting options,
which will be filled the value of `epoch` and
keys in `logs` (passed in `on_epoch_end`).
For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
then the model checkpoints will be saved with the epoch number and
the validation loss in the filename.
# Arguments
filepath: string, path to save the model file.
monitor: quantity to monitor.
verbose: verbosity mode, 0 or 1.
save_best_only: if `save_best_only=True`,
the latest best model according to
the quantity monitored will not be overwritten.
mode: one of {auto, min, max}.
If `save_best_only=True`, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only: if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
period: Interval (number of epochs) between checkpoints.
"""
def __init__(self, filepath, monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto', period=1, prefix=''):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_save = 0
self.prefix = prefix
if mode not in ['auto', 'min', 'max']:
print('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.' % (mode), RuntimeWarning)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def save_model(self, filepath, overwrite):
dirpath = '/'.join(filepath.split('/')[:-1])
# make paths
os.makedirs(os.path.dirname(filepath), exist_ok=True)
if overwrite:
for filename in os.listdir(dirpath):
if self.prefix in filename:
path_to_delete = os.path.join(dirpath, filename)
try:
shutil.rmtree(path_to_delete)
except OSError:
os.remove(path_to_delete)
# delegate the saving to the model
self.save_function(filepath)
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_save += 1
if self.epochs_since_last_save >= self.period:
self.epochs_since_last_save = 0
filepath = '{}/{}_ckpt_epoch_{}.ckpt'.format(self.filepath, self.prefix, epoch + 1)
if self.save_best_only:
current = logs.get(self.monitor)
if current is None:
print('Can save best model only with %s available,'
' skipping.' % (self.monitor), RuntimeWarning)
else:
if self.monitor_op(current, self.best):
if self.verbose > 0:
print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
' saving model to %s'
% (epoch + 1, self.monitor, self.best,
current, filepath))
self.best = current
self.save_model(filepath, overwrite=True)
else:
if self.verbose > 0:
print('\nEpoch %05d: %s did not improve' %
(epoch + 1, self.monitor))
else:
if self.verbose > 0:
print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
self.save_model(filepath, overwrite=False)
class GradientAccumulationScheduler(Callback):
"""Change gradient accumulation factor according to scheduling.
# Arguments
scheduling: dict, scheduling in format {epoch: accumulation_factor}
"""
def __init__(self, scheduling: dict):
if scheduling == {}: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling.keys():
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 1:
msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct"
raise IndexError(msg)
elif minimal_epoch != 1: # if user didnt define first epoch accumulation factor
scheduling.update({1: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def on_epoch_begin(self, epoch, trainer):
epoch += 1 # indexing epochs from 1
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break
if __name__ == '__main__':
c = EarlyStopping(min_delta=0.9, patience=2, verbose=True)
losses = [10, 9, 8, 8, 6, 4.3, 5, 4.4, 2.8, 2.5]
for i, loss in enumerate(losses):
should_stop = c.on_epoch_end(i, logs={'val_loss': loss})
print(loss)
if should_stop:
break