lightning/tests/test_logging.py

409 lines
11 KiB
Python

import os
import pickle
import pytest
import torch
import tests.models.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import (
LightningLoggerBase,
rank_zero_only,
TensorBoardLogger,
MLFlowLogger,
CometLogger,
WandbLogger,
NeptuneLogger
)
from tests.models import LightningTestModel
def test_testtube_logger(tmpdir):
"""Verify that basic functionality of test tube logger works."""
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = tutils.get_test_tube_logger(tmpdir, False)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training failed"
def test_testtube_pickle(tmpdir):
"""Verify that pickling a trainer containing a test tube logger works."""
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = tutils.get_test_tube_logger(tmpdir, False)
logger.log_hyperparams(hparams)
logger.save()
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_mlflow_logger(tmpdir):
"""Verify that basic functionality of mlflow logger works."""
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
mlflow_dir = os.path.join(tmpdir, "mlruns")
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print('result finished')
assert result == 1, "Training failed"
def test_mlflow_pickle(tmpdir):
"""Verify that pickling trainer with mlflow logger works."""
tutils.reset_seed()
# hparams = tutils.get_hparams()
# model = LightningTestModel(hparams)
mlflow_dir = os.path.join(tmpdir, "mlruns")
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_comet_logger(tmpdir, monkeypatch):
"""Verify that basic functionality of Comet.ml logger works."""
# prevent comet logger from trying to print at exit, since
# pytest's stdout/stderr redirection breaks it
import atexit
monkeypatch.setattr(atexit, "register", lambda _: None)
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
comet_dir = os.path.join(tmpdir, "cometruns")
# We test CometLogger in offline mode with local saves
logger = CometLogger(
save_dir=comet_dir,
project_name="general",
workspace="dummy-test",
)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print('result finished')
assert result == 1, "Training failed"
def test_comet_pickle(tmpdir, monkeypatch):
"""Verify that pickling trainer with comet logger works."""
# prevent comet logger from trying to print at exit, since
# pytest's stdout/stderr redirection breaks it
import atexit
monkeypatch.setattr(atexit, "register", lambda _: None)
tutils.reset_seed()
# hparams = tutils.get_hparams()
# model = LightningTestModel(hparams)
comet_dir = os.path.join(tmpdir, "cometruns")
# We test CometLogger in offline mode with local saves
logger = CometLogger(
save_dir=comet_dir,
project_name="general",
workspace="dummy-test",
)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_wandb_logger(tmpdir):
"""Verify that basic functionality of wandb logger works."""
tutils.reset_seed()
wandb_dir = os.path.join(tmpdir, "wandb")
_ = WandbLogger(save_dir=wandb_dir, anonymous=True)
def test_neptune_logger(tmpdir):
"""Verify that basic functionality of neptune logger works."""
tutils.reset_seed()
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = NeptuneLogger(offline_mode=True)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print('result finished')
assert result == 1, "Training failed"
def test_wandb_pickle(tmpdir):
"""Verify that pickling trainer with wandb logger works."""
tutils.reset_seed()
wandb_dir = str(tmpdir)
logger = WandbLogger(save_dir=wandb_dir, anonymous=True)
assert logger is not None
def test_neptune_pickle(tmpdir):
"""Verify that pickling trainer with neptune logger works."""
tutils.reset_seed()
# hparams = tutils.get_hparams()
# model = LightningTestModel(hparams)
logger = NeptuneLogger(offline_mode=True)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_tensorboard_logger(tmpdir):
"""Verify that basic functionality of Tensorboard logger works."""
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_logger_test")
trainer_options = dict(max_epochs=1, train_percent_check=0.01, logger=logger)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print("result finished")
assert result == 1, "Training failed"
def test_tensorboard_pickle(tmpdir):
"""Verify that pickling trainer with Tensorboard logger works."""
# hparams = tutils.get_hparams()
# model = LightningTestModel(hparams)
logger = TensorBoardLogger(save_dir=tmpdir, name="tensorboard_pickle_test")
trainer_options = dict(max_epochs=1, logger=logger)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_tensorboard_automatic_versioning(tmpdir):
"""Verify that automatic versioning works"""
root_dir = tmpdir.mkdir("tb_versioning")
root_dir.mkdir("version_0")
root_dir.mkdir("version_1")
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning")
assert logger.version == 2
def test_tensorboard_manual_versioning(tmpdir):
"""Verify that manual versioning works"""
root_dir = tmpdir.mkdir("tb_versioning")
root_dir.mkdir("version_0")
root_dir.mkdir("version_1")
root_dir.mkdir("version_2")
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
assert logger.version == 1
def test_tensorboard_named_version(tmpdir):
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """
tmpdir.mkdir("tb_versioning")
expected_version = "2020-02-05-162402"
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=expected_version)
logger.log_hyperparams({"a": 1, "b": 2}) # Force data to be written
assert logger.version == expected_version
# Could also test existence of the directory but this fails in the "minimum requirements" test setup
@pytest.mark.parametrize("step_idx", [10, None])
def test_tensorboard_log_metrics(tmpdir, step_idx):
logger = TensorBoardLogger(tmpdir)
metrics = {
"float": 0.3,
"int": 1,
"FloatTensor": torch.tensor(0.1),
"IntTensor": torch.tensor(1)
}
logger.log_metrics(metrics, step_idx)
def test_tensorboard_log_hyperparams(tmpdir):
logger = TensorBoardLogger(tmpdir)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True
}
logger.log_hyperparams(hparams)
def test_custom_logger(tmpdir):
class CustomLogger(LightningLoggerBase):
def __init__(self):
super().__init__()
self.hparams_logged = None
self.metrics_logged = None
self.finalized = False
@rank_zero_only
def log_hyperparams(self, params):
self.hparams_logged = params
@rank_zero_only
def log_metrics(self, metrics, step):
self.metrics_logged = metrics
@rank_zero_only
def finalize(self, status):
self.finalized_status = status
@property
def name(self):
return "name"
@property
def version(self):
return "1"
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = CustomLogger()
trainer_options = dict(
max_epochs=1,
train_percent_check=0.05,
logger=logger,
default_save_path=tmpdir
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training failed"
assert logger.hparams_logged == hparams
assert logger.metrics_logged != {}
assert logger.finalized_status == "success"
def test_adding_step_key(tmpdir):
logged_step = 0
def _validation_end(outputs):
nonlocal logged_step
logged_step += 1
return {"log": {"step": logged_step, "val_acc": logged_step / 10}}
def _log_metrics_decorator(log_metrics_fn):
def decorated(metrics, step):
if "val_acc" in metrics:
assert step == logged_step
return log_metrics_fn(metrics, step)
return decorated
model, hparams = tutils.get_model()
model.validation_end = _validation_end
trainer_options = dict(
max_epochs=4,
default_save_path=tmpdir,
train_percent_check=0.001,
val_percent_check=0.01,
num_sanity_val_steps=0
)
trainer = Trainer(**trainer_options)
trainer.logger.log_metrics = _log_metrics_decorator(trainer.logger.log_metrics)
trainer.fit(model)