123 lines
4.5 KiB
Python
123 lines
4.5 KiB
Python
"""
|
|
Profiling your training run can help you understand if there are any bottlenecks in your code.
|
|
|
|
|
|
Built-in checks
|
|
----------------
|
|
|
|
PyTorch Lightning supports profiling standard actions in the training loop out of the box, including:
|
|
|
|
- on_epoch_start
|
|
- on_epoch_end
|
|
- on_batch_start
|
|
- tbptt_split_batch
|
|
- model_forward
|
|
- model_backward
|
|
- on_after_backward
|
|
- optimizer_step
|
|
- on_batch_end
|
|
- training_end
|
|
- on_training_end
|
|
|
|
Enable simple profiling
|
|
-------------------------
|
|
|
|
If you only wish to profile the standard actions, you can set `profiler=True` when constructing
|
|
your `Trainer` object.
|
|
|
|
.. code-block:: python
|
|
|
|
trainer = Trainer(..., profiler=True)
|
|
|
|
The profiler's results will be printed at the completion of a training `fit()`.
|
|
|
|
.. code-block:: python
|
|
|
|
Profiler Report
|
|
|
|
Action | Mean duration (s) | Total time (s)
|
|
-----------------------------------------------------------------
|
|
on_epoch_start | 5.993e-06 | 5.993e-06
|
|
get_train_batch | 0.0087412 | 16.398
|
|
on_batch_start | 5.0865e-06 | 0.0095372
|
|
model_forward | 0.0017818 | 3.3408
|
|
model_backward | 0.0018283 | 3.4282
|
|
on_after_backward | 4.2862e-06 | 0.0080366
|
|
optimizer_step | 0.0011072 | 2.0759
|
|
on_batch_end | 4.5202e-06 | 0.0084753
|
|
on_epoch_end | 3.919e-06 | 3.919e-06
|
|
on_train_end | 5.449e-06 | 5.449e-06
|
|
|
|
|
|
Advanced Profiling
|
|
--------------------
|
|
|
|
If you want more information on the functions called during each event, you can use the `AdvancedProfiler`.
|
|
This option uses Python's cProfiler_ to provide a report of time spent on *each* function called within your code.
|
|
|
|
.. _cProfiler: https://docs.python.org/3/library/profile.html#module-cProfile
|
|
|
|
.. code-block:: python
|
|
|
|
profiler = AdvancedProfiler()
|
|
trainer = Trainer(..., profiler=profiler)
|
|
|
|
The profiler's results will be printed at the completion of a training `fit()`. This profiler
|
|
report can be quite long, so you can also specify an `output_filename` to save the report instead
|
|
of logging it to the output in your terminal. The output below shows the profiling for the action
|
|
`get_train_batch`.
|
|
|
|
.. code-block:: python
|
|
|
|
Profiler Report
|
|
|
|
Profile stats for: get_train_batch
|
|
4869394 function calls (4863767 primitive calls) in 18.893 seconds
|
|
Ordered by: cumulative time
|
|
List reduced from 76 to 10 due to restriction <10>
|
|
ncalls tottime percall cumtime percall filename:lineno(function)
|
|
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
|
|
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
|
|
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
|
|
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
|
|
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
|
|
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
|
|
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
|
|
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
|
|
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
|
|
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
|
|
|
|
You can also reference this profiler in your LightningModule to profile specific actions of interest.
|
|
If you don't want to always have the profiler turned on, you can optionally pass a `PassThroughProfiler`
|
|
which will allow you to skip profiling without having to make any code changes. Each profiler has a
|
|
method `profile()` which returns a context handler. Simply pass in the name of your action that you want
|
|
to track and the profiler will record performance for code executed within this context.
|
|
|
|
.. code-block:: python
|
|
|
|
from pytorch_lightning.profiler import Profiler, PassThroughProfiler
|
|
|
|
class MyModel(LightningModule):
|
|
def __init__(self, hparams, profiler=None):
|
|
self.hparams = hparams
|
|
self.profiler = profiler or PassThroughProfiler()
|
|
|
|
def custom_processing_step(self, data):
|
|
with profiler.profile('my_custom_action'):
|
|
# custom processing step
|
|
return data
|
|
|
|
profiler = Profiler()
|
|
model = MyModel(hparams, profiler)
|
|
trainer = Trainer(profiler=profiler, max_epochs=1)
|
|
|
|
"""
|
|
|
|
from .profiler import Profiler, AdvancedProfiler, PassThroughProfiler
|
|
|
|
__all__ = [
|
|
'Profiler',
|
|
'AdvancedProfiler',
|
|
'PassThroughProfiler',
|
|
]
|