lightning/tests
Danielle Pintz 0e68734ddd
Make default logger name "lightning_logs" (#11762)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2022-02-10 15:19:18 +05:30
..
accelerators Add `Accelerator.is_available()` interface requirement (#11797) 2022-02-09 15:11:27 -08:00
benchmarks Tests: Fail on FutureWarning (#11541) 2022-01-20 12:52:34 +00:00
callbacks Delete `test_on_before_accelerator_backend_setup` (#11803) 2022-02-08 09:36:37 +00:00
checkpointing Deprecate `on_epoch_start/on_epoch_end` hook (#11578) 2022-02-07 14:15:27 +00:00
core Create loggers property for Trainer and LightningModule (#11683) 2022-02-09 23:39:41 +01:00
deprecated_api Deprecate `on_epoch_start/on_epoch_end` hook (#11578) 2022-02-07 14:15:27 +00:00
helpers Add `Trainer(strategy="bagua")` (#11146) 2022-02-04 17:02:09 +00:00
lite Return the output of the optimizer step (#11711) 2022-02-09 09:37:13 +00:00
loggers Make default logger name "lightning_logs" (#11762) 2022-02-10 15:19:18 +05:30
loops Mark `CheckpointConnector` as protected (#11550) 2022-02-03 02:26:08 +00:00
models Add `Accelerator.is_available()` interface requirement (#11797) 2022-02-09 15:11:27 -08:00
overrides Fix retrieval of batch indices when dataloader num_workers > 0 (#10870) 2021-12-02 10:36:10 +00:00
plugins Add `Accelerator.is_available()` interface requirement (#11797) 2022-02-09 15:11:27 -08:00
profiler Create loggers property for Trainer and LightningModule (#11683) 2022-02-09 23:39:41 +01:00
strategies Configure native deepspeed schedulers with interval='step' (#11788) 2022-02-09 08:20:50 +00:00
trainer Create loggers property for Trainer and LightningModule (#11683) 2022-02-09 23:39:41 +01:00
tuner Update `tests/tuner/*.py` to use `devices` instead of `gpus` or `ipus` (#11520) 2022-02-03 20:58:13 +05:30
utilities Add `Accelerator.is_available()` interface requirement (#11797) 2022-02-09 15:11:27 -08:00
README.md
__init__.py
conftest.py Centralize rank_zero_only utilities into their own module (#11747) 2022-02-07 08:09:55 +00:00
standalone_tests.sh Fix selection of standalone tests (#10857) 2021-12-01 09:48:37 +01:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.9 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.9 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.9 bash
docker image rm pytorch_lightning:devel-torch1.9