lightning/docs/source/multiple_loaders.rst

80 lines
2.2 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.core.lightning import LightningModule
.. _multiple_loaders:
Multiple Datasets
=================
Lightning supports multiple dataloaders in a few ways.
1. Create a dataloader that iterates both datasets under the hood.
2. In the validation and test loop you also have the option to return multiple dataloaders
which lightning will call sequentially.
----------
Multiple training dataloaders
-----------------------------
For training, the best way to use multiple-dataloaders is to create a Dataloader class
which wraps both your dataloaders. (This of course also works for testing and validation
dataloaders).
(`reference <https://discuss.pytorch.org/t/train-simultaneously-on-two-datasets/649/2>`_)
.. testcode::
class ConcatDataset(torch.utils.data.Dataset):
def __init__(self, *datasets):
self.datasets = datasets
def __getitem__(self, i):
return tuple(d[i] for d in self.datasets)
def __len__(self):
return min(len(d) for d in self.datasets)
class LitModel(LightningModule):
def train_dataloader(self):
concat_dataset = ConcatDataset(
datasets.ImageFolder(traindir_A),
datasets.ImageFolder(traindir_B)
)
loader = torch.utils.data.DataLoader(
concat_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True
)
return loader
def val_dataloader(self):
# SAME
...
def test_dataloader(self):
# SAME
...
----------
Test/Val dataloaders
--------------------
For validation, test dataloaders lightning also gives you the additional
option of passing in multiple dataloaders back from each call.
See the following for more details:
- :meth:`~pytorch_lightning.core.LightningModule.val_dataloader`
- :meth:`~pytorch_lightning.core.LightningModule.test_dataloader`
.. testcode::
def val_dataloader(self):
loader_1 = Dataloader()
loader_2 = Dataloader()
return [loader_1, loader_2]