96 lines
3.5 KiB
Python
96 lines
3.5 KiB
Python
import os
|
|
from abc import ABC, abstractmethod
|
|
from typing import List, Callable, Optional
|
|
|
|
|
|
from pytorch_lightning.callbacks import Callback, ModelCheckpoint, EarlyStopping, ProgressBarBase, ProgressBar
|
|
from pytorch_lightning.loggers import LightningLoggerBase
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class TrainerCallbackConfigMixin(ABC):
|
|
|
|
# this is just a summary on variables used in this abstract class,
|
|
# the proper values/initialisation should be done in child class
|
|
callbacks: List[Callback]
|
|
default_root_dir: str
|
|
logger: LightningLoggerBase
|
|
weights_save_path: Optional[str]
|
|
ckpt_path: str
|
|
checkpoint_callback: Optional[ModelCheckpoint]
|
|
|
|
@property
|
|
@abstractmethod
|
|
def slurm_job_id(self) -> int:
|
|
"""Warning: this is just empty shell for code implemented in other class."""
|
|
|
|
@abstractmethod
|
|
def save_checkpoint(self, *args):
|
|
"""Warning: this is just empty shell for code implemented in other class."""
|
|
|
|
@abstractmethod
|
|
def is_overridden(self, *args):
|
|
"""Warning: this is just empty shell for code implemented in other class."""
|
|
|
|
def configure_checkpoint_callback(self, checkpoint_callback):
|
|
"""
|
|
Weight path set in this priority:
|
|
Checkpoint_callback's path (if passed in).
|
|
User provided weights_saved_path
|
|
Otherwise use os.getcwd()
|
|
"""
|
|
if checkpoint_callback is True:
|
|
# when no val step is defined, use 'loss' otherwise 'val_loss'
|
|
train_step_only = not self.is_overridden('validation_step')
|
|
monitor_key = 'loss' if train_step_only else 'val_loss'
|
|
checkpoint_callback = ModelCheckpoint(
|
|
filepath=None,
|
|
monitor=monitor_key
|
|
)
|
|
elif checkpoint_callback is False:
|
|
checkpoint_callback = None
|
|
|
|
if checkpoint_callback:
|
|
checkpoint_callback.save_function = self.save_checkpoint
|
|
|
|
# if weights_save_path is still none here, set to current working dir
|
|
if self.weights_save_path is None:
|
|
self.weights_save_path = self.default_root_dir
|
|
|
|
return checkpoint_callback
|
|
|
|
def configure_early_stopping(self, early_stop_callback):
|
|
if early_stop_callback is True or None:
|
|
early_stop_callback = EarlyStopping(
|
|
monitor='val_loss',
|
|
patience=3,
|
|
strict=True,
|
|
verbose=True,
|
|
mode='min'
|
|
)
|
|
elif not early_stop_callback:
|
|
early_stop_callback = None
|
|
else:
|
|
early_stop_callback = early_stop_callback
|
|
return early_stop_callback
|
|
|
|
def configure_progress_bar(self, refresh_rate=1, process_position=0):
|
|
progress_bars = [c for c in self.callbacks if isinstance(c, ProgressBarBase)]
|
|
if len(progress_bars) > 1:
|
|
raise MisconfigurationException(
|
|
'You added multiple progress bar callbacks to the Trainer, but currently only one'
|
|
' progress bar is supported.'
|
|
)
|
|
elif len(progress_bars) == 1:
|
|
progress_bar_callback = progress_bars[0]
|
|
elif refresh_rate > 0:
|
|
progress_bar_callback = ProgressBar(
|
|
refresh_rate=refresh_rate,
|
|
process_position=process_position,
|
|
)
|
|
self.callbacks.append(progress_bar_callback)
|
|
else:
|
|
progress_bar_callback = None
|
|
|
|
return progress_bar_callback
|