lightning/pytorch_lightning/strategies/fully_sharded.py

221 lines
9.9 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
from typing import Dict, Generator, List, Optional
import torch
import pytorch_lightning as pl
from pytorch_lightning.plugins.environments.cluster_environment import ClusterEnvironment
from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO
from pytorch_lightning.plugins.precision import PrecisionPlugin
from pytorch_lightning.strategies.ddp import DDPStrategy
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities import _FAIRSCALE_FULLY_SHARDED_AVAILABLE
from pytorch_lightning.utilities.enums import PrecisionType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.optimizer import optimizers_to_device
from pytorch_lightning.utilities.types import STEP_OUTPUT
if _FAIRSCALE_FULLY_SHARDED_AVAILABLE:
from fairscale.nn import default_auto_wrap_policy, enable_wrap
from fairscale.nn.data_parallel import FullyShardedDataParallel
log = logging.getLogger(__name__)
class DDPFullyShardedStrategy(DDPStrategy):
strategy_name = "ddp_fully_sharded"
def __init__(
self,
accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None,
cpu_offload: bool = False,
flatten_parameters: bool = True,
reshard_after_forward: bool = True,
move_grads_to_cpu: Optional[bool] = None,
fp32_reduce_scatter: Optional[bool] = None,
compute_dtype: Optional[torch.dtype] = None,
bucket_cap_mb: int = 25,
min_num_params: int = 1e8,
state_dict_to_cpu: bool = True,
parallel_devices: Optional[List[torch.device]] = None,
cluster_environment: Optional[ClusterEnvironment] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[PrecisionPlugin] = None,
process_group_backend: Optional[str] = None,
):
"""Plugin for Fully Sharded Data Parallel provided by FairScale.
Full Sharded Training shards the entire model across all available GPUs, allowing you to scale model
size, whilst using efficient communication to reduce overhead. In practice, this means we can remain
at parity with PyTorch DDP, whilst scaling our model sizes dramatically. The technique is similar
to ZeRO-Stage 3 but has been built for upstreaming to PyTorch.
`For more information: https://fairscale.readthedocs.io/en/latest/api/nn/fsdp.html`.
.. warning:: ``FullyShardedPlugin`` is in beta and subject to change.
Defaults have been set and options have been exposed, but may require configuration
based on your level of memory/speed efficiency. We suggest having a look at this PR for more information.
`https://github.com/facebookresearch/fairscale/pull/413`
Many of the helpful doc strings below came from the original FairScale documentation:
`https://fairscale.readthedocs.io/en/latest/api/nn/fsdp.html`
Arguments:
cpu_offload: Offload FP32 params to CPU. Only usable in precision=16 mode.
(Default: False).
move_grads_to_cpu: Moves gradient shards to CPU after reduction.
Only disable if using CPU based optimizers
(Default to ``cpu_offload``).
flatten_parameters: Flattens parameter into single contiguous tensor for speed efficiency
(Default: True).
reshard_after_forward: Reshard parameters after the forward pass, which saves memory but slows
down training. This is only relevant when resharding individual layers.
(Default: True).
fp32_reduce_scatter: Reduce-Scatter gradients in FP32. Only relevant in mixed precision
(Default: None).
compute_dtype: dtype for full parameters for computation. Default to torch.float32,
unless using mixed precision, in which case defaults to torch.float16.
(Default: None).
bucket_cap_mb: bucket parameters so that gradient reduction
can potentially overlap with backward computation.
bucket_cap_mb controls the bucket size in MegaBytes (MB).
Buckets are sub-divided based on world_size,
so the max shard size is roughly bucket_cap_mb / world_size.
Values <= 0 disable bucketing.
(Default: 25).
min_num_params: Number of parameters to wrap when using FairScale ``auto_wrap``.
(Default: 1e8)
state_dict_to_cpu: Whether to return parameters (returned by :func:`state_dict`) on CPU device.
If ``False``, this will default to ``compute_device``.
(Default: True).
"""
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=cluster_environment,
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
process_group_backend=process_group_backend,
)
self.cpu_offload = cpu_offload
self.move_grads_to_cpu = move_grads_to_cpu
self.flatten_parameters = flatten_parameters
self.reshard_after_forward = reshard_after_forward
self.fp32_reduce_scatter = fp32_reduce_scatter
self.compute_dtype = compute_dtype
self.bucket_cap_mb = bucket_cap_mb
self.min_num_params = min_num_params
self.state_dict_device = torch.device("cpu") if state_dict_to_cpu else None
self._process_group = None
@property
def process_group(self):
if self._process_group is None:
self._process_group = torch.distributed.new_group()
return self._process_group
def setup_distributed(self) -> None:
if not self.root_device.type == "cuda":
raise MisconfigurationException(
"You selected strategy to be `ddp_fully_sharded`, but GPU is not available."
)
super().setup_distributed()
def setup(self, trainer: "pl.Trainer") -> None:
self.accelerator.setup(trainer)
if trainer.state.fn == TrainerFn.FITTING and self._layer_sync:
self.model = self._layer_sync.apply(self.model)
self.configure_ddp()
self.barrier()
self.setup_optimizers(trainer)
optimizers_to_device(self.optimizers, self.root_device)
self.setup_precision_plugin()
@contextlib.contextmanager
def model_sharded_context(self) -> Generator:
log.detail(f"{self.__class__.__name__}: entered model_sharded_context.")
precision = self.precision_plugin.precision
def wrap_policy(*args, **kwargs):
return default_auto_wrap_policy(*args, **kwargs, min_num_params=self.min_num_params)
with enable_wrap(
wrapper_cls=FullyShardedDataParallel,
auto_wrap_policy=wrap_policy,
process_group=self.process_group,
cpu_offload=self.cpu_offload,
move_grads_to_cpu=self.move_grads_to_cpu,
flatten_parameters=self.flatten_parameters,
mixed_precision=(precision == PrecisionType.MIXED),
reshard_after_forward=self.reshard_after_forward,
fp32_reduce_scatter=self.fp32_reduce_scatter,
compute_dtype=self.compute_dtype,
bucket_cap_mb=self.bucket_cap_mb,
state_dict_device=self.state_dict_device,
):
yield
log.detail(f"{self.__class__.__name__}: exiting model_sharded_context.")
def configure_ddp(self) -> None:
log.detail(f"{self.__class__.__name__}: configuring FSDP... (cpu_offload: [{self.cpu_offload}])")
if not self.cpu_offload:
# When using CPU Offload, FSDP will manage the CUDA movement for us.
# Note: this would be problematic for large model (which could not fit in one GPU)
# as FSDP module.to(device) would first summon all parameters
# (TODO: need to figure out solution)
self.model_to_device()
def model_to_device(self) -> None:
log.detail(f"{self.__class__.__name__}: moving model to device [{self.root_device}]...")
# ensure we update the device type in the lightning module
self.lightning_module.to(self.root_device)
def training_step(self, *args, **kwargs) -> STEP_OUTPUT:
with self.precision_plugin.train_step_context():
return self.model.training_step(*args, **kwargs)
def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
with self.precision_plugin.val_step_context():
return self.model.validation_step(*args, **kwargs)
def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
with self.precision_plugin.test_step_context():
return self.model.test_step(*args, **kwargs)
def predict_step(self, *args, **kwargs) -> STEP_OUTPUT:
with self.precision_plugin.predict_step_context():
return self.model.predict_step(*args, **kwargs)
def post_training_step(self):
pass
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
strategy_registry.register(
"fsdp", cls, description="Fully sharded training with checkpointing the full state dict."
)
strategy_registry.register(
cls.strategy_name,
cls,
description=f"{cls.__class__.__name__}",
)