166 lines
5.7 KiB
Python
166 lines
5.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn import DataParallel, Module
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.overrides.data_parallel import LightningParallelModule
|
|
from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO
|
|
from pytorch_lightning.plugins.precision import PrecisionPlugin
|
|
from pytorch_lightning.strategies.parallel import ParallelStrategy
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
from pytorch_lightning.utilities.types import _METRIC_COLLECTION, STEP_OUTPUT
|
|
|
|
|
|
class DataParallelStrategy(ParallelStrategy):
|
|
"""Implements data-parallel training in a single process, i.e., the model gets replicated to each device and
|
|
each gets a split of the data."""
|
|
|
|
strategy_name = "dp"
|
|
|
|
def __init__(
|
|
self,
|
|
accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None,
|
|
parallel_devices: Optional[List[torch.device]] = None,
|
|
checkpoint_io: Optional[CheckpointIO] = None,
|
|
precision_plugin: Optional[PrecisionPlugin] = None,
|
|
):
|
|
super().__init__(
|
|
accelerator=accelerator,
|
|
parallel_devices=parallel_devices,
|
|
cluster_environment=None,
|
|
checkpoint_io=checkpoint_io,
|
|
precision_plugin=precision_plugin,
|
|
)
|
|
|
|
@property
|
|
def global_rank(self) -> int:
|
|
return 0
|
|
|
|
@property
|
|
def local_rank(self) -> int:
|
|
return 0
|
|
|
|
@property
|
|
def node_rank(self) -> int:
|
|
return 0
|
|
|
|
@property
|
|
def world_size(self) -> int:
|
|
return 1
|
|
|
|
def setup(self, trainer: "pl.Trainer") -> None:
|
|
# model needs to be moved to the device before it is wrapped
|
|
self.model_to_device()
|
|
self.model = self._setup_model(LightningParallelModule(self.model))
|
|
super().setup(trainer)
|
|
|
|
def batch_to_device(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0) -> Any:
|
|
"""Moves the batch to the correct device.
|
|
|
|
The input and the output is the same type.
|
|
|
|
Args:
|
|
batch: The batch of samples to move to the correct device
|
|
device: The target device
|
|
dataloader_idx: The index of the dataloader to which the batch belongs.
|
|
"""
|
|
# DataParallel handles the transfer of batch to the device
|
|
return batch
|
|
|
|
def _setup_model(self, model: Module) -> DataParallel:
|
|
"""Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module."""
|
|
return DataParallel(module=model, device_ids=self.parallel_devices)
|
|
|
|
def reduce(self, collection: _METRIC_COLLECTION, *args, **kwargs) -> _METRIC_COLLECTION:
|
|
"""Reduces a collection of tensors from all processes. It can be applied to just a single tensor.
|
|
|
|
Args:
|
|
collection: The collection of tensors to sync and reduce.
|
|
*args: ignored for DP
|
|
**kwargs: ignored for DP
|
|
|
|
Return:
|
|
Reduced tensor values or the same value if it was not or did not contain a tensor.
|
|
"""
|
|
|
|
def mean(t: torch.Tensor) -> torch.Tensor:
|
|
original_dtype = t.dtype
|
|
return t.float().mean().to(original_dtype)
|
|
|
|
return apply_to_collection(collection, torch.Tensor, mean)
|
|
|
|
@property
|
|
def root_device(self):
|
|
return self.parallel_devices[0]
|
|
|
|
def model_to_device(self) -> None:
|
|
self.model.to(self.root_device)
|
|
|
|
def barrier(self, *args, **kwargs):
|
|
pass
|
|
|
|
def broadcast(self, obj: object, src: int = 0) -> object:
|
|
return obj
|
|
|
|
def reduce_boolean_decision(self, decision: bool) -> bool:
|
|
return decision
|
|
|
|
def training_step(self, *args, **kwargs) -> STEP_OUTPUT:
|
|
with self.precision_plugin.train_step_context():
|
|
return self.model(*args, **kwargs)
|
|
|
|
def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
|
|
with self.precision_plugin.val_step_context():
|
|
return self.model(*args, **kwargs)
|
|
|
|
def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
|
|
with self.precision_plugin.test_step_context():
|
|
return self.model(*args, **kwargs)
|
|
|
|
def predict_step(self, *args, **kwargs) -> STEP_OUTPUT:
|
|
with self.precision_plugin.predict_step_context():
|
|
return self.model(*args, **kwargs)
|
|
|
|
def training_step_end(self, output):
|
|
if is_overridden("training_step_end", self.lightning_module):
|
|
return output
|
|
|
|
if isinstance(output, dict) and "loss" in output:
|
|
output["loss"] = self.reduce(output["loss"])
|
|
|
|
elif isinstance(output, torch.Tensor):
|
|
output = self.reduce(output)
|
|
|
|
return output
|
|
|
|
@classmethod
|
|
def register_strategies(cls, strategy_registry: Dict) -> None:
|
|
strategy_registry.register(
|
|
cls.strategy_name,
|
|
cls,
|
|
description=f"{cls.__class__.__name__}",
|
|
)
|
|
|
|
def teardown(self) -> None:
|
|
super().teardown()
|
|
if self.root_device.type == "cuda":
|
|
# GPU teardown
|
|
self.lightning_module.cpu()
|
|
# clean up memory
|
|
torch.cuda.empty_cache()
|