123 lines
5.1 KiB
Python
123 lines
5.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import DataParallel
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.core.mixins import DeviceDtypeModuleMixin
|
|
|
|
|
|
class _LightningPrecisionModuleWrapperBase(DeviceDtypeModuleMixin, torch.nn.Module):
|
|
def __init__(self, pl_module: "pl.LightningModule") -> None:
|
|
"""Wraps the user's LightningModule. Requires overriding all ``*_step`` methods and ``forward`` so that it
|
|
can safely be wrapped by a ``_LightningModuleWrapperBase`` and a ``*DataParallel``.
|
|
|
|
Args:
|
|
pl_module: the model to wrap
|
|
"""
|
|
super().__init__()
|
|
self.module = pl_module
|
|
|
|
# set the parameters_to_ignore from LightningModule.
|
|
_ddp_params_and_buffers_to_ignore = getattr(pl_module, "_ddp_params_and_buffers_to_ignore", [])
|
|
self._ddp_params_and_buffers_to_ignore = [f"module.{p}" for p in _ddp_params_and_buffers_to_ignore]
|
|
|
|
def training_step(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError
|
|
|
|
def validation_step(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError
|
|
|
|
def test_step(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError
|
|
|
|
def predict_step(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError
|
|
|
|
def forward(self, *args: Any, **kwargs: Any) -> Any:
|
|
raise NotImplementedError
|
|
|
|
def on_post_move_to_device(self) -> None:
|
|
pass
|
|
|
|
|
|
class _LightningModuleWrapperBase(DeviceDtypeModuleMixin, torch.nn.Module):
|
|
def __init__(self, pl_module: Union["pl.LightningModule", _LightningPrecisionModuleWrapperBase]):
|
|
"""
|
|
Wraps the user's LightningModule and redirects the forward call to the appropriate
|
|
method, either ``training_step``, ``validation_step`` or ``test_step``.
|
|
If the LightningModule is in none of the states `training`, `testing` or `validation`,
|
|
the inputs will be redirected to the
|
|
:meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method.
|
|
Inheriting classes may also modify the inputs or outputs of forward.
|
|
|
|
Args:
|
|
pl_module: the model to wrap
|
|
"""
|
|
super().__init__()
|
|
self.module = pl_module
|
|
|
|
# set the parameters_to_ignore from LightningModule.
|
|
_ddp_params_and_buffers_to_ignore = getattr(pl_module, "_ddp_params_and_buffers_to_ignore", [])
|
|
self._ddp_params_and_buffers_to_ignore = [f"module.{p}" for p in _ddp_params_and_buffers_to_ignore]
|
|
|
|
def forward(self, *inputs: Any, **kwargs: Any) -> Any:
|
|
lightning_module = unwrap_lightning_module(self.module)
|
|
trainer = lightning_module.trainer
|
|
|
|
if trainer and trainer.training:
|
|
output = self.module.training_step(*inputs, **kwargs)
|
|
|
|
# In manual_optimization, we need to prevent DDP reducer as
|
|
# it is done manually in `LightningModule.manual_backward`
|
|
# `require_backward_grad_sync` will be reset in the
|
|
# ddp_strategy `post_training_step` hook
|
|
if not lightning_module.automatic_optimization:
|
|
trainer.model.require_backward_grad_sync = False
|
|
elif trainer and trainer.testing:
|
|
output = self.module.test_step(*inputs, **kwargs)
|
|
elif trainer and (trainer.sanity_checking or trainer.validating):
|
|
output = self.module.validation_step(*inputs, **kwargs)
|
|
elif trainer and trainer.predicting:
|
|
output = self.module.predict_step(*inputs, **kwargs)
|
|
else:
|
|
output = self.module(*inputs, **kwargs)
|
|
|
|
return output
|
|
|
|
def on_post_move_to_device(self) -> None:
|
|
pass
|
|
|
|
|
|
def unwrap_lightning_module(wrapped_model: nn.Module) -> "pl.LightningModule":
|
|
"""Recursively unwraps a :class:`~pytorch_lightning.core.lightning.LightningModule` by following the
|
|
``.module`` attributes on the wrapper.
|
|
|
|
Raises:
|
|
TypeError: If the unwrapping leads to a module that is not a LightningModule and that cannot be unwrapped
|
|
further.
|
|
"""
|
|
model = wrapped_model
|
|
if isinstance(model, (DistributedDataParallel, DataParallel)):
|
|
model = unwrap_lightning_module(model.module)
|
|
if isinstance(model, (_LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase)):
|
|
model = unwrap_lightning_module(model.module)
|
|
if not isinstance(model, pl.LightningModule):
|
|
raise TypeError(f"Unwrapping the module did not yield a `LightningModule`, got {type(model)} instead.")
|
|
return model
|