134 lines
5.0 KiB
Python
134 lines
5.0 KiB
Python
import subprocess
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as torch_distrib
|
|
from pytorch_lightning.utilities.model_utils import is_overridden
|
|
from pytorch_lightning.trainer.supporters import Accumulator
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from pytorch_lightning.core.step_result import Result
|
|
from pytorch_lightning import _logger as log
|
|
|
|
|
|
class TrainLoop:
|
|
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
self.should_check_val = False
|
|
self.early_stopping_accumulator = None
|
|
self.checkpoint_accumulator = None
|
|
self._teardown_already_run = False
|
|
|
|
@property
|
|
def num_optimizers(self):
|
|
num_optimizers = len(self.get_optimizers_iterable())
|
|
return num_optimizers
|
|
|
|
def on_train_start(self):
|
|
# clear cache before training
|
|
if self.trainer.on_gpu and self.trainer.root_gpu is not None:
|
|
# use context because of:
|
|
# https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
|
|
with torch.cuda.device(f'cuda:{self.trainer.root_gpu}'):
|
|
torch.cuda.empty_cache()
|
|
|
|
# hook
|
|
self.trainer.call_hook('on_train_start')
|
|
|
|
def on_train_end(self):
|
|
if self._teardown_already_run:
|
|
return
|
|
|
|
self._teardown_already_run = True
|
|
|
|
# Save latest checkpoint
|
|
log.info('Saving latest checkpoint..')
|
|
self.check_checkpoint_callback(should_check_val=False)
|
|
|
|
# hook
|
|
self.trainer.call_hook('on_train_end')
|
|
|
|
# kill loggers
|
|
if self.trainer.logger is not None:
|
|
self.trainer.logger.finalize("success")
|
|
|
|
# summarize profile results
|
|
if self.trainer.global_rank == 0:
|
|
self.trainer.profiler.describe()
|
|
|
|
if self.trainer.global_rank == 0:
|
|
for proc in self.trainer.interactive_ddp_procs:
|
|
subprocess.Popen.kill(proc)
|
|
|
|
# clean up dist group
|
|
if self.trainer.use_ddp or self.trainer.use_ddp2:
|
|
torch_distrib.destroy_process_group()
|
|
|
|
# clear mem
|
|
if self.trainer.on_gpu:
|
|
model = self.trainer.get_model()
|
|
model.cpu()
|
|
torch.cuda.empty_cache()
|
|
|
|
def check_checkpoint_callback(self, should_check_val):
|
|
model = self.trainer.get_model()
|
|
|
|
# when no val loop is present or fast-dev-run still need to call checkpoints
|
|
# TODO bake this logic into the checkpoint callback
|
|
should_activate = not is_overridden('validation_step', model) and not should_check_val
|
|
if should_activate:
|
|
checkpoint_callbacks = [c for c in self.trainer.callbacks if isinstance(c, ModelCheckpoint)]
|
|
[c.on_validation_end(self.trainer, model) for c in checkpoint_callbacks]
|
|
|
|
def on_train_epoch_start(self):
|
|
# hook
|
|
self.trainer.call_hook('on_epoch_start')
|
|
self.trainer.call_hook('on_train_epoch_start')
|
|
|
|
# bookkeeping
|
|
self.should_check_val = False
|
|
|
|
# structured result accumulators for callbacks
|
|
self.early_stopping_accumulator = Accumulator()
|
|
self.checkpoint_accumulator = Accumulator()
|
|
|
|
|
|
def on_train_batch_end(self, epoch_output, epoch_end_outputs, batch, batch_idx, dataloader_idx):
|
|
# figure out what to track for epoch end
|
|
self.track_epoch_end_reduce_metrics(epoch_output, epoch_end_outputs)
|
|
|
|
# hook
|
|
self.trainer.call_hook('on_batch_end')
|
|
self.trainer.call_hook('on_train_batch_end', batch, batch_idx, dataloader_idx)
|
|
|
|
def reset_train_val_dataloaders(self, model):
|
|
if not self.trainer.reload_dataloaders_every_epoch:
|
|
self.trainer.reset_train_dataloader(model)
|
|
|
|
if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
|
|
self.trainer.reset_val_dataloader(model)
|
|
|
|
def track_epoch_end_reduce_metrics(self, epoch_output, epoch_end_outputs):
|
|
# track the outputs to reduce at the end of the epoch
|
|
for opt_idx, opt_outputs in enumerate(epoch_end_outputs):
|
|
# with 1 step (no tbptt) don't use a sequence at epoch end
|
|
if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
|
|
opt_outputs = opt_outputs[0]
|
|
epoch_output[opt_idx].append(opt_outputs)
|
|
|
|
|
|
def get_optimizers_iterable(self):
|
|
"""
|
|
Generates an iterable with (idx, optimizer) for each optimizer.
|
|
"""
|
|
if not self.trainer.optimizer_frequencies:
|
|
# call training_step once per optimizer
|
|
return list(enumerate(self.trainer.optimizers))
|
|
|
|
optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
|
|
optimizers_loop_length = optimizer_freq_cumsum[-1]
|
|
current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length
|
|
|
|
# find optimzier index by looking for the first {item > current_place} in the cumsum list
|
|
opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
|
|
return [(opt_idx, self.trainer.optimizers[opt_idx])]
|