lightning/dockers
Sean Naren 8439aead66
Update FairScale on CI (#7017)
* Try updating CI to latest fairscale

* Update availability of imports.py

* Remove some of the fairscale custom ci stuff

* Update grad scaler within the new process as reference is incorrect for spawn

* Remove fairscale from mocks

* Install fairscale 0.3.4 into the base container, remove from extra.txt

* Update docs/source/conf.py

* Fix import issues

* Mock fairscale for docs

* Fix DeepSpeed and FairScale to specific versions

* Swap back to greater than

* extras

* Revert "extras"

This reverts commit 7353479f

* ci

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: jirka <jirka.borovec@seznam.cz>
2021-04-23 12:37:00 +01:00
..
base-conda Fix `apex` version in Docker due to broken upstream (#7146) 2021-04-21 23:58:55 +01:00
base-cuda Update FairScale on CI (#7017) 2021-04-23 12:37:00 +01:00
base-xla require: adjust versions (#6363) 2021-03-06 14:34:54 +01:00
nvidia update docker base on PT 1.7 (#6931) 2021-04-13 10:06:06 +01:00
release remake nvidia docker (#6686) 2021-03-29 09:39:06 +01:00
tpu-tests move accelerator legacy tests (#5948) 2021-02-13 19:42:18 -05:00
README.md try fix: Docker with Conda & PT 1.8 (#5842) 2021-02-09 08:22:35 +00:00

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.8-pt1.6 \
    -f dockers/base-cuda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.6 \
    .

or nightly version from Coda

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.7-pt1.8 \
    -f dockers/base-conda/Dockerfile \
    --build-arg PYTHON_VERSION=3.7 \
    --build-arg PYTORCH_VERSION=1.8 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6