247 lines
9.4 KiB
Python
247 lines
9.4 KiB
Python
import os
|
|
import random
|
|
from argparse import ArgumentParser, Namespace
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms as transforms
|
|
from PIL import Image
|
|
from torch.utils.data import DataLoader, Dataset
|
|
|
|
import pytorch_lightning as pl
|
|
from pl_examples.models.unet import UNet
|
|
from pytorch_lightning.loggers import WandbLogger
|
|
|
|
DEFAULT_VOID_LABELS = (0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1)
|
|
DEFAULT_VALID_LABELS = (7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33)
|
|
|
|
|
|
class KITTI(Dataset):
|
|
"""
|
|
Class for KITTI Semantic Segmentation Benchmark dataset
|
|
Dataset link - http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015
|
|
|
|
There are 34 classes in the given labels. However, not all of them are useful for training
|
|
(like railings on highways, road dividers, etc.).
|
|
So, these useless classes (the pixel values of these classes) are stored in the `void_labels`.
|
|
The useful classes are stored in the `valid_labels`.
|
|
|
|
The `encode_segmap` function sets all pixels with any of the `void_labels` to `ignore_index`
|
|
(250 by default). It also sets all of the valid pixels to the appropriate value between 0 and
|
|
`len(valid_labels)` (since that is the number of valid classes), so it can be used properly by
|
|
the loss function when comparing with the output.
|
|
|
|
The `get_filenames` function retrieves the filenames of all images in the given `path` and
|
|
saves the absolute path in a list.
|
|
|
|
In the `get_item` function, images and masks are resized to the given `img_size`, masks are
|
|
encoded using `encode_segmap`, and given `transform` (if any) are applied to the image only
|
|
(mask does not usually require transforms, but they can be implemented in a similar way).
|
|
"""
|
|
IMAGE_PATH = os.path.join('training', 'image_2')
|
|
MASK_PATH = os.path.join('training', 'semantic')
|
|
|
|
def __init__(
|
|
self,
|
|
data_path: str,
|
|
split: str,
|
|
img_size: tuple = (1242, 376),
|
|
void_labels: list = DEFAULT_VOID_LABELS,
|
|
valid_labels: list = DEFAULT_VALID_LABELS,
|
|
transform=None
|
|
):
|
|
self.img_size = img_size
|
|
self.void_labels = void_labels
|
|
self.valid_labels = valid_labels
|
|
self.ignore_index = 250
|
|
self.class_map = dict(zip(self.valid_labels, range(len(self.valid_labels))))
|
|
self.transform = transform
|
|
|
|
self.split = split
|
|
self.data_path = data_path
|
|
self.img_path = os.path.join(self.data_path, self.IMAGE_PATH)
|
|
self.mask_path = os.path.join(self.data_path, self.MASK_PATH)
|
|
self.img_list = self.get_filenames(self.img_path)
|
|
self.mask_list = self.get_filenames(self.mask_path)
|
|
|
|
# Split between train and valid set (80/20)
|
|
random_inst = random.Random(12345) # for repeatability
|
|
n_items = len(self.img_list)
|
|
idxs = random_inst.sample(range(n_items), n_items // 5)
|
|
if self.split == 'train':
|
|
idxs = [idx for idx in range(n_items) if idx not in idxs]
|
|
self.img_list = [self.img_list[i] for i in idxs]
|
|
self.mask_list = [self.mask_list[i] for i in idxs]
|
|
|
|
def __len__(self):
|
|
return len(self.img_list)
|
|
|
|
def __getitem__(self, idx):
|
|
img = Image.open(self.img_list[idx])
|
|
img = img.resize(self.img_size)
|
|
img = np.array(img)
|
|
|
|
mask = Image.open(self.mask_list[idx]).convert('L')
|
|
mask = mask.resize(self.img_size)
|
|
mask = np.array(mask)
|
|
mask = self.encode_segmap(mask)
|
|
|
|
if self.transform:
|
|
img = self.transform(img)
|
|
|
|
return img, mask
|
|
|
|
def encode_segmap(self, mask):
|
|
"""
|
|
Sets void classes to zero so they won't be considered for training
|
|
"""
|
|
for voidc in self.void_labels:
|
|
mask[mask == voidc] = self.ignore_index
|
|
for validc in self.valid_labels:
|
|
mask[mask == validc] = self.class_map[validc]
|
|
# remove extra idxs from updated dataset
|
|
mask[mask > 18] = self.ignore_index
|
|
return mask
|
|
|
|
def get_filenames(self, path):
|
|
"""
|
|
Returns a list of absolute paths to images inside given `path`
|
|
"""
|
|
files_list = list()
|
|
for filename in os.listdir(path):
|
|
files_list.append(os.path.join(path, filename))
|
|
return files_list
|
|
|
|
|
|
class SegModel(pl.LightningModule):
|
|
"""
|
|
Semantic Segmentation Module
|
|
|
|
This is a basic semantic segmentation module implemented with Lightning.
|
|
It uses CrossEntropyLoss as the default loss function. May be replaced with
|
|
other loss functions as required.
|
|
It is specific to KITTI dataset i.e. dataloaders are for KITTI
|
|
and Normalize transform uses the mean and standard deviation of this dataset.
|
|
It uses the FCN ResNet50 model as an example.
|
|
|
|
Adam optimizer is used along with Cosine Annealing learning rate scheduler.
|
|
"""
|
|
|
|
def __init__(self,
|
|
data_path: str,
|
|
batch_size: int,
|
|
lr: float,
|
|
num_layers: int,
|
|
features_start: int,
|
|
bilinear: bool, **kwargs):
|
|
super().__init__()
|
|
self.data_path = data_path
|
|
self.batch_size = batch_size
|
|
self.lr = lr
|
|
self.num_layers = num_layers
|
|
self.features_start = features_start
|
|
self.bilinear = bilinear
|
|
|
|
self.net = UNet(num_classes=19, num_layers=self.num_layers,
|
|
features_start=self.features_start, bilinear=self.bilinear)
|
|
self.transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.35675976, 0.37380189, 0.3764753],
|
|
std=[0.32064945, 0.32098866, 0.32325324])
|
|
])
|
|
self.trainset = KITTI(self.data_path, split='train', transform=self.transform)
|
|
self.validset = KITTI(self.data_path, split='valid', transform=self.transform)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
def training_step(self, batch, batch_nb):
|
|
img, mask = batch
|
|
img = img.float()
|
|
mask = mask.long()
|
|
out = self(img)
|
|
loss_val = F.cross_entropy(out, mask, ignore_index=250)
|
|
log_dict = {'train_loss': loss_val}
|
|
return {'loss': loss_val, 'log': log_dict, 'progress_bar': log_dict}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
img, mask = batch
|
|
img = img.float()
|
|
mask = mask.long()
|
|
out = self(img)
|
|
loss_val = F.cross_entropy(out, mask, ignore_index=250)
|
|
return {'val_loss': loss_val}
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
loss_val = torch.stack([x['val_loss'] for x in outputs]).mean()
|
|
log_dict = {'val_loss': loss_val}
|
|
return {'log': log_dict, 'val_loss': log_dict['val_loss'], 'progress_bar': log_dict}
|
|
|
|
def configure_optimizers(self):
|
|
opt = torch.optim.Adam(self.net.parameters(), lr=self.learning_rate)
|
|
sch = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=10)
|
|
return [opt], [sch]
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.trainset, batch_size=self.batch_size, shuffle=True)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.validset, batch_size=self.batch_size, shuffle=False)
|
|
|
|
|
|
def main(hparams: Namespace):
|
|
# ------------------------
|
|
# 1 INIT LIGHTNING MODEL
|
|
# ------------------------
|
|
model = SegModel(**vars(hparams))
|
|
|
|
# ------------------------
|
|
# 2 SET LOGGER
|
|
# ------------------------
|
|
logger = False
|
|
if hparams.log_wandb:
|
|
logger = WandbLogger()
|
|
|
|
# optional: log model topology
|
|
logger.watch(model.net)
|
|
|
|
# ------------------------
|
|
# 3 INIT TRAINER
|
|
# ------------------------
|
|
trainer = pl.Trainer(
|
|
gpus=hparams.gpus,
|
|
logger=logger,
|
|
max_epochs=hparams.epochs,
|
|
accumulate_grad_batches=hparams.grad_batches,
|
|
distributed_backend=hparams.distributed_backend,
|
|
precision=16 if hparams.use_amp else 32,
|
|
)
|
|
|
|
# ------------------------
|
|
# 5 START TRAINING
|
|
# ------------------------
|
|
trainer.fit(model)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--data_path", type=str, help="path where dataset is stored")
|
|
parser.add_argument("--gpus", type=int, default=-1, help="number of available GPUs")
|
|
parser.add_argument('--distributed-backend', type=str, default='dp', choices=('dp', 'ddp', 'ddp2'),
|
|
help='supports three options dp, ddp, ddp2')
|
|
parser.add_argument('--use_amp', action='store_true', help='if true uses 16 bit precision')
|
|
parser.add_argument("--batch_size", type=int, default=4, help="size of the batches")
|
|
parser.add_argument("--lr", type=float, default=0.001, help="adam: learning rate")
|
|
parser.add_argument("--num_layers", type=int, default=5, help="number of layers on u-net")
|
|
parser.add_argument("--features_start", type=float, default=64, help="number of features in first layer")
|
|
parser.add_argument("--bilinear", action='store_true', default=False,
|
|
help="whether to use bilinear interpolation or transposed")
|
|
parser.add_argument("--grad_batches", type=int, default=1, help="number of batches to accumulate")
|
|
parser.add_argument("--epochs", type=int, default=20, help="number of epochs to train")
|
|
parser.add_argument("--log_wandb", action='store_true', help="log training on Weights & Biases")
|
|
|
|
hparams = parser.parse_args()
|
|
|
|
main(hparams)
|