202 lines
5.4 KiB
Python
202 lines
5.4 KiB
Python
'''
|
|
Generates a summary of a model's layers and dimensionality
|
|
'''
|
|
|
|
import gc
|
|
|
|
import torch
|
|
import subprocess
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
class ModelSummary(object):
|
|
|
|
def __init__(self, model):
|
|
'''
|
|
Generates summaries of model layers and dimensions.
|
|
'''
|
|
self.model = model
|
|
self.in_sizes = []
|
|
self.out_sizes = []
|
|
|
|
self.summarize()
|
|
|
|
def __str__(self):
|
|
return self.summary.__str__()
|
|
|
|
def __repr__(self):
|
|
return self.summary.__str__()
|
|
|
|
def get_variable_sizes(self):
|
|
'''Run sample input through each layer to get output sizes'''
|
|
mods = list(self.model.modules())
|
|
in_sizes = []
|
|
out_sizes = []
|
|
input_ = self.model.example_input_array
|
|
|
|
if self.model.on_gpu:
|
|
input_ = input_.cuda(0)
|
|
|
|
if self.model.trainer.use_amp:
|
|
input_ = input_.half()
|
|
|
|
with torch.no_grad():
|
|
|
|
for i in range(1, len(mods)):
|
|
m = mods[i]
|
|
if type(input_) is list or type(input_) is tuple: # pragma: no cover
|
|
out = m(*input_)
|
|
else:
|
|
out = m(input_)
|
|
|
|
if type(input_) is tuple or type(input_) is list: # pragma: no cover
|
|
in_size = []
|
|
for x in input_:
|
|
if type(x) is list:
|
|
in_size.append(len(x))
|
|
else:
|
|
in_size.append(x.size())
|
|
else:
|
|
in_size = np.array(input_.size())
|
|
|
|
in_sizes.append(in_size)
|
|
|
|
if type(out) is tuple or type(out) is list: # pragma: no cover
|
|
out_size = np.asarray([x.size() for x in out])
|
|
else:
|
|
out_size = np.array(out.size())
|
|
|
|
out_sizes.append(out_size)
|
|
input_ = out
|
|
|
|
self.in_sizes = in_sizes
|
|
self.out_sizes = out_sizes
|
|
return
|
|
|
|
def get_layer_names(self):
|
|
'''Collect Layer Names'''
|
|
mods = list(self.model.named_modules())
|
|
names = []
|
|
layers = []
|
|
for m in mods[1:]:
|
|
names += [m[0]]
|
|
layers += [str(m[1].__class__)]
|
|
|
|
layer_types = [x.split('.')[-1][:-2] for x in layers]
|
|
|
|
self.layer_names = names
|
|
self.layer_types = layer_types
|
|
return
|
|
|
|
def get_parameter_sizes(self):
|
|
'''Get sizes of all parameters in `model`'''
|
|
mods = list(self.model.modules())
|
|
sizes = []
|
|
|
|
for i in range(1, len(mods)):
|
|
m = mods[i]
|
|
p = list(m.parameters())
|
|
modsz = []
|
|
for j in range(len(p)):
|
|
modsz.append(np.array(p[j].size()))
|
|
sizes.append(modsz)
|
|
|
|
self.param_sizes = sizes
|
|
return
|
|
|
|
def get_parameter_nums(self):
|
|
'''Get number of parameters in each layer'''
|
|
param_nums = []
|
|
for mod in self.param_sizes:
|
|
all_params = 0
|
|
for p in mod:
|
|
all_params += np.prod(p)
|
|
param_nums.append(all_params)
|
|
self.param_nums = param_nums
|
|
return
|
|
|
|
def make_summary(self):
|
|
'''
|
|
Makes a summary listing with:
|
|
|
|
Layer Name, Layer Type, Input Size, Output Size, Number of Parameters
|
|
'''
|
|
|
|
cols = ['Name', 'Type', 'Params']
|
|
if self.model.example_input_array is not None:
|
|
cols.extend(['In_sizes', 'Out_sizes'])
|
|
|
|
df = pd.DataFrame(np.zeros((len(self.layer_names), len(cols))))
|
|
df.columns = cols
|
|
|
|
df['Name'] = self.layer_names
|
|
df['Type'] = self.layer_types
|
|
df['Params'] = self.param_nums
|
|
|
|
if self.model.example_input_array is not None:
|
|
|
|
df['In_sizes'] = self.in_sizes
|
|
df['Out_sizes'] = self.out_sizes
|
|
|
|
self.summary = df
|
|
return
|
|
|
|
def summarize(self):
|
|
self.get_layer_names()
|
|
self.get_parameter_sizes()
|
|
self.get_parameter_nums()
|
|
|
|
if self.model.example_input_array is not None:
|
|
self.get_variable_sizes()
|
|
self.make_summary()
|
|
|
|
|
|
def print_mem_stack(): # pragma: no cover
|
|
for obj in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
|
|
print(type(obj), obj.size())
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def count_mem_items(): # pragma: no cover
|
|
nb_params = 0
|
|
nb_tensors = 0
|
|
for obj in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
|
|
obj_type = str(type(obj))
|
|
if 'parameter' in obj_type:
|
|
nb_params += 1
|
|
else:
|
|
nb_tensors += 1
|
|
except Exception:
|
|
pass
|
|
|
|
return nb_params, nb_tensors
|
|
|
|
|
|
def get_gpu_memory_map():
|
|
"""Get the current gpu usage.
|
|
|
|
Returns
|
|
-------
|
|
usage: dict
|
|
Keys are device ids as integers.
|
|
Values are memory usage as integers in MB.
|
|
"""
|
|
result = subprocess.check_output(
|
|
[
|
|
'nvidia-smi', '--query-gpu=memory.used',
|
|
'--format=csv,nounits,noheader'
|
|
], encoding='utf-8')
|
|
# Convert lines into a dictionary
|
|
gpu_memory = [int(x) for x in result.strip().split('\n')]
|
|
gpu_memory_map = {}
|
|
for k, v in zip(range(len(gpu_memory)), gpu_memory):
|
|
k = 'gpu_%i' % k
|
|
gpu_memory_map[k] = v
|
|
return gpu_memory_map
|