lightning/pytorch_lightning/plugins/precision/apex_amp.py

173 lines
6.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Generator, List, Sequence, Tuple, Type, TYPE_CHECKING
import torch
from pytorch_lightning.core import LightningModule
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
from pytorch_lightning.utilities import _APEX_AVAILABLE, AMPType, rank_zero_warn
if _APEX_AVAILABLE:
from apex import amp
if TYPE_CHECKING:
from torch.optim import Optimizer
class ApexMixedPrecisionPlugin(MixedPrecisionPlugin):
"""Mixed Precision Plugin based on Nvidia/Apex (https://github.com/NVIDIA/apex)"""
def __init__(self, amp_level: str = "O2") -> None:
self.backend = AMPType.APEX
self.amp_level = amp_level
def master_params(self, optimizer: 'Optimizer') -> Generator[torch.Tensor, None, None]:
return amp.master_params(optimizer)
def connect(self, model: torch.nn.Module, optimizers: Sequence['Optimizer'],
lr_schedulers: Sequence[Any]) -> Tuple[torch.nn.Module, Sequence['Optimizer'], Sequence[Any]]:
"""Connects the precision plugin to the training process,
configures apex and reinits the schedulers
"""
if model.device.type != "cuda":
return model, optimizers, lr_schedulers
model, optimizers = self.configure_apex(amp, model, list(optimizers), self.amp_level)
self.reinit_scheduler_properties(optimizers, lr_schedulers)
return model, optimizers, lr_schedulers
def backward(
self,
model: LightningModule,
closure_loss: torch.Tensor,
optimizer: 'Optimizer',
opt_idx: int,
should_accumulate: bool,
*args: Any,
**kwargs: Any,
) -> torch.Tensor:
"""performs the actual backpropagation
Args:
model: the model to be optimized
closure_loss: the loss value obtained from the closure
optimizer: the optimizer to perform the step lateron
opt_idx: the optimizer's index
should_accumulate: whether to accumulate gradients or not
"""
closure_loss = amp.scale_loss(closure_loss, model.trainer.optimizers if optimizer is None else optimizer)
# enter apex context
context = closure_loss
closure_loss = closure_loss.__enter__()
# do backward pass
# TODO: not entirely sure, why we need this
if model is not None and isinstance(model, LightningModule):
model.backward(closure_loss, optimizer, opt_idx, **kwargs)
# TODO: avoid dev_debugger and track these calls with mock
model.trainer.dev_debugger.track_event('AMP', str(AMPType.APEX))
else:
closure_loss.backward(*args, **kwargs)
# exit amp context
a, b, c = None, None, None
error = context.__exit__(a, b, c)
if error:
rank_zero_warn(a, b, c)
raise Exception("apex unscale error")
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
return closure_loss
def configure_apex(
self,
amp: Type,
model: LightningModule,
optimizers: List['Optimizer'],
amp_level: str,
) -> Tuple[LightningModule, List['Optimizer']]:
r"""
Override to init AMP your own way.
Must return a model and list of optimizers.
Args:
amp: pointer to amp library object.
model: pointer to current :class:`LightningModule`.
optimizers: list of optimizers passed in :meth:`configure_optimizers`.
amp_level: AMP mode chosen ('O1', 'O2', etc...)
Return:
Apex wrapped model and optimizers
Examples:
.. code-block:: python
# Default implementation used by Trainer.
def configure_apex(self, amp, model, optimizers, amp_level):
model, optimizers = amp.initialize(
model, optimizers, opt_level=amp_level,
)
return model, optimizers
"""
model, optimizers = amp.initialize(model, optimizers, opt_level=amp_level)
return model, optimizers
@staticmethod
def reinit_scheduler_properties(optimizers: Sequence['Optimizer'], schedulers: Sequence[Any]) -> None:
"""Reinitializes schedulers with correct properties"""
# Reinitialize optimizer.step properties added by schedulers
for scheduler in schedulers:
scheduler = scheduler['scheduler']
state = None
for optimizer in optimizers:
# check that we dont mix users optimizers and schedulers
if scheduler.optimizer == optimizer:
# Find the mro belonging to the base lr scheduler class
for i, mro in enumerate(scheduler.__class__.__mro__):
if mro in (torch.optim.lr_scheduler._LRScheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
state = scheduler.state_dict()
scheduler.__class__.__mro__[i].__init__(scheduler, optimizer)
scheduler.load_state_dict(state)
break
if state is not None:
break
def pre_optimizer_step(
self,
pl_module: LightningModule,
optimizer: 'Optimizer',
optimizer_idx: int,
lambda_closure: Callable,
**kwargs: Any,
) -> bool:
"""
always called before the optimizer step.
"""
# apex amp does not support closures.
lambda_closure()
if not pl_module.automatic_optimization:
pl_module.trainer.call_hook("on_after_backward")
optimizer.step(**kwargs)
return False