lightning/pytorch_lightning/utilities/fetching.py

424 lines
15 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections.abc import Iterable, Iterator
from contextlib import contextmanager
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Generator, List, Optional, Tuple
import torch
from torch.utils.data.dataloader import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
from pytorch_lightning.utilities.apply_func import apply_to_collection, apply_to_collections
from pytorch_lightning.utilities.auto_restart import (
_add_capture_metadata_collate,
IteratorState,
MergedIteratorState,
patch_dataloader_iterator,
)
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _fault_tolerant_training
class AbstractDataFetcher(ABC):
"""This base class should be used to implement a fault tolerant ``DataFetcher``. It is required to override the
``fetching_function`` with fetching logic.
Example::
class SimpleDataFetcher(AbstractDataFetcher):
def fetching_function(self):
while True:
try:
return next(self.dataloader_iter), False
except StopIteration:
return None, True
"""
@abstractmethod
def fetching_function(self) -> Any:
"""Override with your own fetching logic."""
@abstractmethod
def prefetching(self, prefetch_batches: int) -> None:
"""Override with your own pre-fetching logic."""
def __init__(
self,
prefetch_batches: int = 0,
) -> None:
if prefetch_batches < 0:
raise MisconfigurationException("`prefetch_batches` should at least be 0.")
self.store_on_device = False
self.prefetch_batches = prefetch_batches + 1
self.dataloader: Optional[Iterable] = None
self.dataloader_iter: Optional[Iterator] = None
self.stage: Optional[str]
self.batch_to_device: Optional[Callable]
self.profiler: "Optional[pl.profiler.base.BaseProfiler]"
self.batches: List
self.fetched: int
self.done: bool
self.reset()
def setup(
self,
dataloader: Iterable,
stage: Optional[str] = None,
batch_to_device: Optional[Callable] = None,
profiler: "Optional[pl.profiler.base.BaseProfiler]" = None,
) -> None:
self._add_capture_metadata_collate(dataloader)
self.dataloader = dataloader
self.stage = stage
self.batch_to_device = batch_to_device
self.profiler = profiler
if self.profiler is not None and stage is None:
raise MisconfigurationException("When providing a profiler, the stage should be provided too.")
@staticmethod
def _add_capture_metadata_collate(dataloader: Iterable) -> None:
if not isinstance(dataloader, (DataLoader, CombinedLoader)):
return
if isinstance(dataloader, CombinedLoader):
dataloader = dataloader.loaders
def add_capture_metadata_collate(dataloader: DataLoader):
if not isinstance(dataloader.collate_fn, partial):
_add_capture_metadata_collate(dataloader)
apply_to_collection(dataloader, DataLoader, add_capture_metadata_collate)
def append_batch(self, batch) -> None:
self.batches.append(batch)
def pop_batch(self) -> Any:
return self.batches.pop(0)
def _apply_patch(self):
def _apply_patch_fn(loader: DataLoader, iterator: Iterator):
if isinstance(loader, CycleIterator):
loader = loader.loader
# cycle_iterator = iterator
iterator = iterator._loader_iter
if isinstance(loader, DataLoader) and _fault_tolerant_training():
loader._lightning_fetcher = self
patch_dataloader_iterator(loader, iterator, self)
apply_to_collections(self.loaders, self.loader_iters, (Iterator, DataLoader), _apply_patch_fn)
def _store_dataloader_iter_state(
self, dataloader_iter: Iterator, dataloader_iter_states: List[IteratorState]
) -> None:
if getattr(dataloader_iter, "cache_states", None) is None:
dataloader_iter.cache_states = {}
if getattr(dataloader_iter, "state", None) is None:
dataloader_iter.state = MergedIteratorState()
for iter_state in dataloader_iter_states:
iter_name = iter_state.name
if iter_name not in dataloader_iter.cache_states:
dataloader_iter.cache_states[iter_name] = []
dataloader_iter.cache_states[iter_name].append(iter_state)
if self.fetched >= self.prefetch_batches:
for iter_state in dataloader_iter_states:
if len(dataloader_iter.state):
dataloader_iter.previous_state = deepcopy(dataloader_iter.state)
iter_name = iter_state.name
state = dataloader_iter.cache_states[iter_name].pop(0)
dataloader_iter.state.update(iter_name, state)
@property
def loaders(self) -> List[DataLoader]:
if self.dataloader is None:
raise MisconfigurationException(
"The `DataFetcher` should be setup with an instance of a PyTorch ``DataLoader``."
)
if isinstance(self.dataloader, CombinedLoader):
loaders = self.dataloader.loaders
else:
loaders = [self.dataloader]
return loaders
@property
def loader_iters(self) -> List[Iterator]:
if self.dataloader is None:
raise MisconfigurationException(
"The `DataFetcher` should be setup with an instance of a PyTorch ``DataLoader``."
)
if self.dataloader_iter is None:
raise MisconfigurationException("The `dataloader_iter` isn't available outside the __iter__ context.")
if isinstance(self.dataloader, CombinedLoader):
loader_iters = self.dataloader_iter.loader_iters
else:
loader_iters = [self.dataloader_iter]
return loader_iters
@property
def state(self) -> Any:
def collect_state(iterator: Iterator):
return iterator.state
return apply_to_collection(self.loader_iters, Iterator, collect_state)
def __iter__(self) -> Generator[Tuple[Any, bool], None, None]:
if self.dataloader is None:
raise MisconfigurationException("The iterate hasn't been provided. HINT: Did you call setup function ?.")
self.reset()
self.dataloader_iter = iter(self.dataloader)
self._apply_patch()
self.prefetching(self.prefetch_batches)
return self
def __next__(self):
return self.fetching_function()
def reset(self) -> None:
self.batches: List = []
self.dataloader: Optional[Iterable]
self.fetched: int = 0
self.done: bool = False
def teardown(self) -> None:
self.reset()
class DataFetcher(AbstractDataFetcher):
"""This class is used to control batch fetching flow. By default, the ``fetching_function`` will pre-fetch a
batch in advance to detect the end of the iteration.
Args:
prefetch_batches: Number of batches to be pre-fetched. Lightning will pre-fetch
at least 1 batch for tracking the latest batch.
store_on_device: Whether to store the pre-fetched batches on device.
"""
def __init__(
self,
prefetch_batches: int = 0,
store_on_device: bool = False,
) -> None:
super().__init__(prefetch_batches=prefetch_batches)
self.store_on_device = store_on_device
@contextmanager
def fetching_context(self):
"""Hook to override to add context logic around batch fetching."""
yield
def on_fetch_start(self) -> None:
"""Hook to override to handle the logic before fetching a batch."""
def on_fetch_end(self, batch, on_fetch_start_output: Optional[Any] = None) -> None:
"""Hook to extend which handles the logic after fetching a batch."""
if self.store_on_device:
batch = self.move_data_to_device(batch)
self.append_batch(batch)
def wait(self) -> None:
"""Hook to override to indicate the `DataFetcher` to wait for an event."""
def prefetching(self, prefetch_batches: int) -> None:
for _ in range(prefetch_batches):
try:
self._fetch_next_batch()
except StopIteration:
break
def fetching_function(self) -> Optional[Tuple[Any, bool]]:
if self.done:
while self.batches:
return self._get_queued_batch()
raise StopIteration
else:
try:
yield_batch = self.pop_batch()
self._fetch_next_batch()
# wait for batch to be available.
self.wait()
# yield last and has next
return yield_batch, False
# FIXME: Why does this count as a python `referrers` ?
# return (self.move_data_to_device(yield_batch) if not self.store_on_device else yield_batch, False)
except StopIteration:
self.batches.insert(0, yield_batch)
self.done = True
return self._get_queued_batch()
except IndexError:
raise StopIteration
@contextmanager
def apply_profiler(self, name: str) -> Generator:
if self.profiler:
with self.profiler.profile(name):
yield
else:
yield
def _fetch_next_batch(self):
with self.apply_profiler(f"get_{self.stage}_batch"):
with self.fetching_context():
data = self.on_fetch_start()
with self.apply_profiler(f"fetch_next_{self.stage}_batch"):
batch = next(self.dataloader_iter)
self.fetched += 1
self.on_fetch_end(batch, data)
def _consume_prefetched_batches(self) -> Generator:
self.done = True
while self.batches:
yield from self._yield_batch()
def _get_queued_batch(self) -> Tuple[Any, bool]:
self.wait()
batch = self.batches.pop(0)
is_last = len(self.batches) == 0
return batch, is_last
def move_data_to_device(self, batch: Any) -> Any:
if self.batch_to_device:
with self.apply_profiler(f"move_{self.stage}_batch_to_device"):
batch = self.batch_to_device(batch)
return batch
class InterBatchParallelDataFetcher(DataFetcher):
"""This class implements inter-batch parallelism, which aims at hiding the latency of host-to-device copy of
input batches behind computationally intensive operations.
code-block::
Without parallelization:
batch 0: [HtoD][forward][backward]
batch 1: [HtoD][forward][backward]
batch 2: [HtoD][forward][backward]
With parallelization, the latency of HtoD copy can be hidden:
batch 0: [HtoD][forward][backward]
batch 1: [HtoD] [forward][backward]
batch 2: [HtoD] [forward][backward]
"""
def __init__(
self,
prefetch_batches: int = 0,
) -> None:
super().__init__(prefetch_batches=prefetch_batches, store_on_device=True)
self.cuda_stream = torch.cuda.Stream()
self.events: List[torch.cuda.Event] = []
@contextmanager
def fetching_context(self):
"""Wrap the batch fetching logic under a cuda stream."""
with torch.cuda.stream(self.cuda_stream):
yield
def on_fetch_start(self) -> "torch.cuda.Event":
# create a cuda event used to record the async stream of data to device.
return torch.cuda.Event()
def on_fetch_end(self, batch, event: torch.cuda.Event) -> None:
# move the batch to device and store it
super().on_fetch_end(batch)
# record event and store the event
event.record()
self.events.append(event)
def wait(self) -> None:
# pop first event from the queue and wait for the batch to be available on device.
event = self.events.pop(0)
event.wait()
class StepFuncDataLoaderIter:
"""This class is a wrapper to keep track of dataloader iterator fetching event while left entirely to user
control."""
def __init__(self, iterator: Iterator, data_fetcher: "AbstractDataFetcher"):
self.iterator = iterator
self.data_fetcher = data_fetcher
def __iter__(self) -> "StepFuncDataLoaderIter":
return self
def __next__(self) -> Any:
try:
data = next(self.iterator)
self.data_fetcher.fetched += 1
return data
except StopIteration:
self.data_fetcher.done = True
raise StopIteration
class DataLoaderIterDataFetcher(AbstractDataFetcher):
"""This class is used to return directly the `dataloader_iter` to the ``LightningModule`` training_step for
users to implement their own pre-fetching logic. This feature can be activated as follows:
Example::
Class MyModel(LightningModule):
def __init__(self):
self.automatic_optimization = False
def training_step(self, dataloader_iter: Iterator, batch_idx: int) -> None:
# it is the user responsability to fetch and move the batch to the right device.
batch = next(dataloader_iter)
batch = batch.to(self.device)
...
"""
def __init__(self):
super().__init__()
# prevent calling ``move_batch_to_device```
self.store_on_device = True
def prefetching(self, prefetch_batches: int) -> None:
self.iterator = iter(StepFuncDataLoaderIter(self.dataloader_iter, self))
def fetching_function(self):
while not self.done:
return self.fetched, (self.iterator, self.done)
raise StopIteration