lightning/pytorch_lightning/trainer/connectors/optimizer_connector.py

96 lines
4.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional
from weakref import proxy
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class OptimizerConnector:
def __init__(self, trainer: "pl.Trainer") -> None:
self.trainer = proxy(trainer)
def on_trainer_init(self) -> None:
self.trainer.lr_schedulers = []
self.trainer.optimizers = []
self.trainer.optimizer_frequencies = []
def update_learning_rates(
self, interval: str, update_plateau_schedulers: bool, opt_indices: Optional[List[int]] = None
) -> None:
"""Update learning rates.
Args:
interval: either 'epoch' or 'step'.
update_plateau_schedulers: control whether ``ReduceLROnPlateau`` or non-plateau schedulers get updated.
This is used so non-plateau schedulers can be updated before running validation. Checkpoints are
commonly saved during validation, however, on-plateau schedulers might monitor a validation metric
so they have to be updated separately.
opt_indices: indices of the optimizers to update.
"""
if not self.trainer.lr_schedulers or not self.trainer.lightning_module.automatic_optimization:
return
if opt_indices is None:
opt_indices = []
for lr_scheduler in self.trainer.lr_schedulers:
if isinstance(lr_scheduler["opt_idx"], int) and lr_scheduler["opt_idx"] not in opt_indices:
continue
if update_plateau_schedulers ^ lr_scheduler["reduce_on_plateau"]:
continue
current_idx = self.trainer.fit_loop.batch_idx if interval == "step" else self.trainer.current_epoch
current_idx += 1 # account for both batch and epoch starts from 0
# Take step if call to update_learning_rates matches the interval key and
# the current step modulo the schedulers frequency is zero
if lr_scheduler["interval"] == interval and current_idx % lr_scheduler["frequency"] == 0:
monitor_val = None
if lr_scheduler["reduce_on_plateau"]:
# If instance of ReduceLROnPlateau, we need a monitor
monitor_key = lr_scheduler["monitor"]
monitor_val = self._get_monitor_value(monitor_key)
if monitor_val is None:
if lr_scheduler.get("strict", True):
avail_metrics = list(self.trainer.callback_metrics)
raise MisconfigurationException(
f"ReduceLROnPlateau conditioned on metric {monitor_key}"
f" which is not available. Available metrics are: {avail_metrics}."
" Condition can be set using `monitor` key in lr scheduler dict"
)
rank_zero_warn(
f"ReduceLROnPlateau conditioned on metric {monitor_key}"
" which is not available but strict is set to `False`."
" Skipping learning rate update.",
RuntimeWarning,
)
continue
self.trainer.fit_loop.epoch_loop.scheduler_progress.increment_ready()
# update LR
if lr_scheduler["reduce_on_plateau"]:
lr_scheduler["scheduler"].step(monitor_val)
else:
lr_scheduler["scheduler"].step()
self.trainer.fit_loop.epoch_loop.scheduler_progress.increment_completed()
def _get_monitor_value(self, key: str) -> Any:
# this is a separate method to aid in testing
return self.trainer.callback_metrics.get(key)