116 lines
4.5 KiB
Python
116 lines
4.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import numbers
|
|
import warnings
|
|
from typing import Any
|
|
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.overrides.base import _LightningModuleWrapperBase
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
|
|
|
|
def _ignore_scalar_return_in_dp():
|
|
# Users get confused by this warning so we silence it
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
message=(
|
|
"Was asked to gather along dimension 0, but all input tensors were scalars;"
|
|
" will instead unsqueeze and return a vector."
|
|
),
|
|
)
|
|
|
|
|
|
class LightningParallelModule(_LightningModuleWrapperBase):
|
|
"""Wraps the user's LightningModule and redirects the forward call to the appropriate method, either
|
|
``training_step``, ``validation_step``, ``test_step`` or ``predict``. This class is used in combination with
|
|
:class:`~torch.nn.parallel.DataParallel` as shown in the example. It also takes care of converting Python
|
|
scalars to Tensors and un-squeezes 0-dimensional Tensors as it is required by
|
|
:class:`~torch.nn.parallel.DataParallel`.
|
|
|
|
Example:
|
|
|
|
dp_model = torch.nn.DataParallel(
|
|
module=LightningParallelModule(lightning_module),
|
|
device_ids=[3, 4],
|
|
...
|
|
)
|
|
|
|
Args:
|
|
pl_module: the model to wrap
|
|
"""
|
|
|
|
def __init__(self, pl_module: "pl.LightningModule") -> None:
|
|
super().__init__(pl_module)
|
|
_ignore_scalar_return_in_dp()
|
|
|
|
def forward(self, *inputs, **kwargs):
|
|
self.update_replica_device_attributes(inputs)
|
|
# forward call will redirect to training_step, validation_step, etc.
|
|
output = super().forward(*inputs, **kwargs)
|
|
|
|
def output_transform(data: Any):
|
|
data = python_scalar_to_tensor(data, self.module.device)
|
|
data = unsqueeze_scalar_tensor(data)
|
|
return data
|
|
|
|
output = apply_to_collection(output, dtype=(numbers.Number, torch.Tensor), function=output_transform)
|
|
return output
|
|
|
|
def update_replica_device_attributes(self, inputs: Any) -> None:
|
|
"""Updates the device information of LightningModule by reading the device from the inputs. In
|
|
:class:`~torch.nn.data_parallel.DataParallel` changes to the state during the `forward` pass are lost when
|
|
the replicas get discarded. The only way to know the current device is from the inputs passed into the
|
|
model.
|
|
|
|
Args:
|
|
inputs: A collection of inputs (typically a tuple). If the inputs don't contain tensors,
|
|
a warning is shown that accessing ``self.device`` will not return the correct device.
|
|
"""
|
|
replica_device = None
|
|
|
|
def find_tensor_with_device(tensor: torch.Tensor) -> torch.Tensor:
|
|
nonlocal replica_device
|
|
if replica_device is None and tensor.device != torch.device("cpu"):
|
|
replica_device = tensor.device
|
|
return tensor
|
|
|
|
apply_to_collection(inputs, dtype=torch.Tensor, function=find_tensor_with_device)
|
|
|
|
if replica_device is not None:
|
|
# by calling .to() we force the update to the self.device property
|
|
self.module.to(device=replica_device)
|
|
else:
|
|
rank_zero_warn(
|
|
"Could not determine on which device the inputs are."
|
|
" When using DataParallel (strategy='dp'), be aware that in case you are using self.device"
|
|
" in your code, it will reference only the root device."
|
|
)
|
|
|
|
|
|
def python_scalar_to_tensor(data: Any, device: torch.device = torch.device("cpu")) -> Any:
|
|
"""Converts a Python scalar number to a torch tensor and places it on the given device."""
|
|
if isinstance(data, numbers.Number):
|
|
data = torch.tensor([data], device=device)
|
|
return data
|
|
|
|
|
|
def unsqueeze_scalar_tensor(data: Any) -> Any:
|
|
"""Un-squeezes a 0-dim tensor."""
|
|
if isinstance(data, torch.Tensor) and data.dim() == 0:
|
|
data = data.unsqueeze(0)
|
|
return data
|