lightning/pytorch_lightning/utilities/memory.py

64 lines
1.9 KiB
Python

import gc
import torch
def recursive_detach(in_dict: dict) -> dict:
"""Detach all tensors in `in_dict`.
May operate recursively if some of the values in `in_dict` are dictionaries
which contain instances of `torch.Tensor`. Other types in `in_dict` are
not affected by this utility function.
Args:
in_dict:
Return:
out_dict:
"""
out_dict = {}
for k, v in in_dict.items():
if isinstance(v, dict):
out_dict.update({k: recursive_detach(v)})
elif callable(getattr(v, 'detach', None)):
out_dict.update({k: v.detach()})
else:
out_dict.update({k: v})
return out_dict
def is_oom_error(exception):
return is_cuda_out_of_memory(exception) \
or is_cudnn_snafu(exception) \
or is_out_of_cpu_memory(exception)
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def is_cuda_out_of_memory(exception):
return isinstance(exception, RuntimeError) \
and len(exception.args) == 1 \
and "CUDA out of memory." in exception.args[0]
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def is_cudnn_snafu(exception):
# For/because of https://github.com/pytorch/pytorch/issues/4107
return isinstance(exception, RuntimeError) \
and len(exception.args) == 1 \
and "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED." in exception.args[0]
# based on https://github.com/BlackHC/toma/blob/master/toma/cpu_memory.py
def is_out_of_cpu_memory(exception):
return isinstance(exception, RuntimeError) \
and len(exception.args) == 1 \
and "DefaultCPUAllocator: can't allocate memory" in exception.args[0]
# based on https://github.com/BlackHC/toma/blob/master/toma/torch_cuda_memory.py
def garbage_collection_cuda():
"""Garbage collection Torch (CUDA) memory."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()