lightning/pytorch_lightning/accelerators/ddp_spawn_backend.py

164 lines
5.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import torch
import torch.multiprocessing as mp
from pytorch_lightning import _logger as log
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
try:
from apex import amp
except ImportError:
amp = None
class DDPSpawnBackend(object):
def __init__(self, trainer):
self.trainer = trainer
self.mp_queue = None
def setup(self):
self.trainer.set_random_port()
# pass in a state q
smp = mp.get_context('spawn')
self.mp_queue = smp.SimpleQueue()
def train(self, model, nprocs):
mp.spawn(self.ddp_train, nprocs=nprocs, args=(self.mp_queue, model,))
def teardown(self, model):
# restore main state with best weights
best_path = self.mp_queue.get()
results = self.mp_queue.get()
last_path = self.mp_queue.get()
# transfer back the best path to the trainer
if self.trainer.checkpoint_callback:
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also bets score
# load last weights
if last_path is not None and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
return results
def ddp_train(self, process_idx, mp_queue, model):
"""
Entry point for ddp
Args:
process_idx:
mp_queue: multiprocessing queue
model:
Returns:
"""
# show progressbar only on progress_rank 0
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()
# determine which process we are and world size
if self.trainer.use_ddp:
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
elif self.trainer.use_ddp2:
self.trainer.local_rank = self.trainer.node_rank
self.trainer.global_rank = self.trainer.node_rank
self.trainer.world_size = self.trainer.num_nodes
# set warning rank
rank_zero_only.rank = self.trainer.global_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self.trainer
model.init_ddp_connection(
self.trainer.global_rank,
self.trainer.world_size,
self.trainer.is_slurm_managing_tasks
)
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero:
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend}')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
self.trainer.optimizers = optimizers
self.trainer.lr_schedulers = lr_schedulers
self.trainer.optimizer_frequencies = optimizer_frequencies
# call sync_bn before .cuda(), configure_apex and configure_ddp
if self.trainer.sync_batchnorm:
model = model.configure_sync_batchnorm(model)
# MODEL
# copy model to each gpu
if self.trainer.on_gpu:
gpu_idx = process_idx
self.trainer.root_gpu = gpu_idx
torch.cuda.set_device(self.trainer.root_gpu)
model.cuda(self.trainer.root_gpu)
# set model properties before going into wrapper
self.trainer.copy_trainer_model_properties(model)
# AMP -
# run through amp wrapper before going to distributed DP
if self.trainer.amp_type == AMPType.APEX:
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
self.trainer.optimizers = optimizers
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
# DDP2 uses all GPUs on the machine
if self.trainer.distributed_backend == 'ddp' or self.trainer.distributed_backend == 'ddp_spawn':
device_ids = [self.trainer.root_gpu]
elif self.trainer.use_ddp2:
device_ids = self.trainer.data_parallel_device_ids
else: # includes ddp_cpu
device_ids = None
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# continue training routine
results = self.trainer.run_pretrain_routine(model)
# get original model
model = self.trainer.get_model()
# persist info in ddp_spawn
self.trainer.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
# clean up memory
torch.cuda.empty_cache()