363 lines
12 KiB
Python
363 lines
12 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import copy
|
|
import inspect
|
|
import pickle
|
|
import types
|
|
from argparse import Namespace
|
|
from dataclasses import fields, is_dataclass
|
|
from typing import Any, Dict, Optional, Sequence, Tuple, Union
|
|
|
|
from pytorch_lightning.utilities.warnings import rank_zero_warn
|
|
|
|
|
|
def str_to_bool_or_str(val: str) -> Union[str, bool]:
|
|
"""Possibly convert a string representation of truth to bool.
|
|
Returns the input otherwise.
|
|
Based on the python implementation distutils.utils.strtobool
|
|
|
|
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
|
|
are 'n', 'no', 'f', 'false', 'off', and '0'.
|
|
"""
|
|
lower = val.lower()
|
|
if lower in ('y', 'yes', 't', 'true', 'on', '1'):
|
|
return True
|
|
elif lower in ('n', 'no', 'f', 'false', 'off', '0'):
|
|
return False
|
|
else:
|
|
return val
|
|
|
|
|
|
def str_to_bool(val: str) -> bool:
|
|
"""Convert a string representation of truth to bool.
|
|
|
|
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
|
|
are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if
|
|
'val' is anything else.
|
|
|
|
>>> str_to_bool('YES')
|
|
True
|
|
>>> str_to_bool('FALSE')
|
|
False
|
|
"""
|
|
val = str_to_bool_or_str(val)
|
|
if isinstance(val, bool):
|
|
return val
|
|
raise ValueError(f'invalid truth value {val}')
|
|
|
|
|
|
def str_to_bool_or_int(val: str) -> Union[bool, int, str]:
|
|
"""Convert a string representation to truth of bool if possible, or otherwise try to convert it to an int.
|
|
|
|
>>> str_to_bool_or_int("FALSE")
|
|
False
|
|
>>> str_to_bool_or_int("1")
|
|
True
|
|
>>> str_to_bool_or_int("2")
|
|
2
|
|
>>> str_to_bool_or_int("abc")
|
|
'abc'
|
|
"""
|
|
val = str_to_bool_or_str(val)
|
|
if isinstance(val, bool):
|
|
return val
|
|
try:
|
|
return int(val)
|
|
except ValueError:
|
|
return val
|
|
|
|
|
|
def is_picklable(obj: object) -> bool:
|
|
"""Tests if an object can be pickled"""
|
|
|
|
try:
|
|
pickle.dumps(obj)
|
|
return True
|
|
except (pickle.PickleError, AttributeError):
|
|
return False
|
|
|
|
|
|
def clean_namespace(hparams):
|
|
"""Removes all unpicklable entries from hparams"""
|
|
|
|
hparams_dict = hparams
|
|
if isinstance(hparams, Namespace):
|
|
hparams_dict = hparams.__dict__
|
|
|
|
del_attrs = [k for k, v in hparams_dict.items() if not is_picklable(v)]
|
|
|
|
for k in del_attrs:
|
|
rank_zero_warn(f"attribute '{k}' removed from hparams because it cannot be pickled")
|
|
del hparams_dict[k]
|
|
|
|
|
|
def parse_class_init_keys(cls) -> Tuple[str, str, str]:
|
|
"""Parse key words for standard self, *args and **kwargs
|
|
|
|
>>> class Model():
|
|
... def __init__(self, hparams, *my_args, anykw=42, **my_kwargs):
|
|
... pass
|
|
>>> parse_class_init_keys(Model)
|
|
('self', 'my_args', 'my_kwargs')
|
|
"""
|
|
init_parameters = inspect.signature(cls.__init__).parameters
|
|
# docs claims the params are always ordered
|
|
# https://docs.python.org/3/library/inspect.html#inspect.Signature.parameters
|
|
init_params = list(init_parameters.values())
|
|
# self is always first
|
|
n_self = init_params[0].name
|
|
|
|
def _get_first_if_any(params, param_type):
|
|
for p in params:
|
|
if p.kind == param_type:
|
|
return p.name
|
|
|
|
n_args = _get_first_if_any(init_params, inspect.Parameter.VAR_POSITIONAL)
|
|
n_kwargs = _get_first_if_any(init_params, inspect.Parameter.VAR_KEYWORD)
|
|
|
|
return n_self, n_args, n_kwargs
|
|
|
|
|
|
def get_init_args(frame) -> dict:
|
|
_, _, _, local_vars = inspect.getargvalues(frame)
|
|
if '__class__' not in local_vars:
|
|
return {}
|
|
cls = local_vars['__class__']
|
|
init_parameters = inspect.signature(cls.__init__).parameters
|
|
self_var, args_var, kwargs_var = parse_class_init_keys(cls)
|
|
filtered_vars = [n for n in (self_var, args_var, kwargs_var) if n]
|
|
exclude_argnames = (*filtered_vars, '__class__', 'frame', 'frame_args')
|
|
# only collect variables that appear in the signature
|
|
local_args = {k: local_vars[k] for k in init_parameters.keys()}
|
|
local_args.update(local_args.get(kwargs_var, {}))
|
|
local_args = {k: v for k, v in local_args.items() if k not in exclude_argnames}
|
|
return local_args
|
|
|
|
|
|
def collect_init_args(frame, path_args: list, inside: bool = False) -> list:
|
|
"""
|
|
Recursively collects the arguments passed to the child constructors in the inheritance tree.
|
|
|
|
Args:
|
|
frame: the current stack frame
|
|
path_args: a list of dictionaries containing the constructor args in all parent classes
|
|
inside: track if we are inside inheritance path, avoid terminating too soon
|
|
|
|
Return:
|
|
A list of dictionaries where each dictionary contains the arguments passed to the
|
|
constructor at that level. The last entry corresponds to the constructor call of the
|
|
most specific class in the hierarchy.
|
|
"""
|
|
_, _, _, local_vars = inspect.getargvalues(frame)
|
|
if '__class__' in local_vars:
|
|
local_args = get_init_args(frame)
|
|
# recursive update
|
|
path_args.append(local_args)
|
|
return collect_init_args(frame.f_back, path_args, inside=True)
|
|
elif not inside:
|
|
return collect_init_args(frame.f_back, path_args, inside)
|
|
else:
|
|
return path_args
|
|
|
|
|
|
def flatten_dict(source, result=None):
|
|
if result is None:
|
|
result = {}
|
|
|
|
for k, v in source.items():
|
|
if isinstance(v, dict):
|
|
_ = flatten_dict(v, result)
|
|
else:
|
|
result[k] = v
|
|
|
|
return result
|
|
|
|
|
|
def save_hyperparameters(
|
|
obj: Any,
|
|
*args,
|
|
ignore: Optional[Union[Sequence[str], str]] = None,
|
|
frame: Optional[types.FrameType] = None
|
|
) -> None:
|
|
"""See :meth:`~pytorch_lightning.LightningModule.save_hyperparameters`"""
|
|
|
|
if len(args) == 1 and not isinstance(args, str) and not args[0]:
|
|
# args[0] is an empty container
|
|
return
|
|
|
|
if not frame:
|
|
frame = inspect.currentframe().f_back
|
|
|
|
if is_dataclass(obj):
|
|
init_args = {f.name: getattr(obj, f.name) for f in fields(obj)}
|
|
else:
|
|
init_args = get_init_args(frame)
|
|
assert init_args, "failed to inspect the obj init"
|
|
|
|
if ignore is not None:
|
|
if isinstance(ignore, str):
|
|
ignore = [ignore]
|
|
if isinstance(ignore, (list, tuple)):
|
|
ignore = [arg for arg in ignore if isinstance(arg, str)]
|
|
init_args = {k: v for k, v in init_args.items() if k not in ignore}
|
|
|
|
if not args:
|
|
# take all arguments
|
|
hp = init_args
|
|
obj._hparams_name = "kwargs" if hp else None
|
|
else:
|
|
# take only listed arguments in `save_hparams`
|
|
isx_non_str = [i for i, arg in enumerate(args) if not isinstance(arg, str)]
|
|
if len(isx_non_str) == 1:
|
|
hp = args[isx_non_str[0]]
|
|
cand_names = [k for k, v in init_args.items() if v == hp]
|
|
obj._hparams_name = cand_names[0] if cand_names else None
|
|
else:
|
|
hp = {arg: init_args[arg] for arg in args if isinstance(arg, str)}
|
|
obj._hparams_name = "kwargs"
|
|
|
|
# `hparams` are expected here
|
|
if hp:
|
|
obj._set_hparams(hp)
|
|
# make deep copy so there is not other runtime changes reflected
|
|
obj._hparams_initial = copy.deepcopy(obj._hparams)
|
|
|
|
|
|
class AttributeDict(Dict):
|
|
"""Extended dictionary accesisable with dot notation.
|
|
|
|
>>> ad = AttributeDict({'key1': 1, 'key2': 'abc'})
|
|
>>> ad.key1
|
|
1
|
|
>>> ad.update({'my-key': 3.14})
|
|
>>> ad.update(mew_key=42)
|
|
>>> ad.key1 = 2
|
|
>>> ad
|
|
"key1": 2
|
|
"key2": abc
|
|
"mew_key": 42
|
|
"my-key": 3.14
|
|
"""
|
|
|
|
def __getattr__(self, key):
|
|
try:
|
|
return self[key]
|
|
except KeyError as exp:
|
|
raise AttributeError(f'Missing attribute "{key}"') from exp
|
|
|
|
def __setattr__(self, key, val):
|
|
self[key] = val
|
|
|
|
def __repr__(self):
|
|
if not len(self):
|
|
return ""
|
|
max_key_length = max([len(str(k)) for k in self])
|
|
tmp_name = '{:' + str(max_key_length + 3) + 's} {}'
|
|
rows = [tmp_name.format(f'"{n}":', self[n]) for n in sorted(self.keys())]
|
|
out = '\n'.join(rows)
|
|
return out
|
|
|
|
|
|
def _lightning_get_all_attr_holders(model, attribute):
|
|
"""
|
|
Special attribute finding for Lightning. Gets all of the objects or dicts that holds attribute.
|
|
Checks for attribute in model namespace, the old hparams namespace/dict, and the datamodule.
|
|
"""
|
|
trainer = getattr(model, 'trainer', None)
|
|
|
|
holders = []
|
|
|
|
# Check if attribute in model
|
|
if hasattr(model, attribute):
|
|
holders.append(model)
|
|
|
|
# Check if attribute in model.hparams, either namespace or dict
|
|
if hasattr(model, 'hparams'):
|
|
if attribute in model.hparams:
|
|
holders.append(model.hparams)
|
|
|
|
# Check if the attribute in datamodule (datamodule gets registered in Trainer)
|
|
if trainer is not None and trainer.datamodule is not None and hasattr(trainer.datamodule, attribute):
|
|
holders.append(trainer.datamodule)
|
|
|
|
return holders
|
|
|
|
|
|
def _lightning_get_first_attr_holder(model, attribute):
|
|
"""
|
|
Special attribute finding for Lightning. Gets the object or dict that holds attribute, or None.
|
|
Checks for attribute in model namespace, the old hparams namespace/dict, and the datamodule,
|
|
returns the last one that has it.
|
|
"""
|
|
holders = _lightning_get_all_attr_holders(model, attribute)
|
|
if len(holders) == 0:
|
|
return None
|
|
# using the last holder to preserve backwards compatibility
|
|
return holders[-1]
|
|
|
|
|
|
def lightning_hasattr(model, attribute):
|
|
"""
|
|
Special hasattr for Lightning. Checks for attribute in model namespace,
|
|
the old hparams namespace/dict, and the datamodule.
|
|
"""
|
|
return _lightning_get_first_attr_holder(model, attribute) is not None
|
|
|
|
|
|
def lightning_getattr(model, attribute):
|
|
"""
|
|
Special getattr for Lightning. Checks for attribute in model namespace,
|
|
the old hparams namespace/dict, and the datamodule.
|
|
|
|
Raises:
|
|
AttributeError:
|
|
If ``model`` doesn't have ``attribute`` in any of
|
|
model namespace, the hparams namespace/dict, and the datamodule.
|
|
"""
|
|
holder = _lightning_get_first_attr_holder(model, attribute)
|
|
if holder is None:
|
|
raise AttributeError(
|
|
f'{attribute} is neither stored in the model namespace'
|
|
' nor the `hparams` namespace/dict, nor the datamodule.'
|
|
)
|
|
|
|
if isinstance(holder, dict):
|
|
return holder[attribute]
|
|
return getattr(holder, attribute)
|
|
|
|
|
|
def lightning_setattr(model, attribute, value):
|
|
"""
|
|
Special setattr for Lightning. Checks for attribute in model namespace
|
|
and the old hparams namespace/dict.
|
|
Will also set the attribute on datamodule, if it exists.
|
|
|
|
Raises:
|
|
AttributeError:
|
|
If ``model`` doesn't have ``attribute`` in any of
|
|
model namespace, the hparams namespace/dict, and the datamodule.
|
|
"""
|
|
holders = _lightning_get_all_attr_holders(model, attribute)
|
|
if len(holders) == 0:
|
|
raise AttributeError(
|
|
f'{attribute} is neither stored in the model namespace'
|
|
' nor the `hparams` namespace/dict, nor the datamodule.'
|
|
)
|
|
|
|
for holder in holders:
|
|
if isinstance(holder, dict):
|
|
holder[attribute] = value
|
|
else:
|
|
setattr(holder, attribute, value)
|