lightning/pytorch_lightning/utilities/data.py

57 lines
2.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
from torch.utils.data import DataLoader, IterableDataset
from pytorch_lightning.utilities import rank_zero_warn
def has_iterable_dataset(dataloader: DataLoader):
return hasattr(dataloader, 'dataset') and isinstance(dataloader.dataset, IterableDataset)
def has_len(dataloader: DataLoader) -> bool:
""" Checks if a given Dataloader has __len__ method implemented i.e. if
it is a finite dataloader or infinite dataloader. """
try:
# try getting the length
if len(dataloader) == 0:
raise ValueError('`Dataloader` returned 0 length. Please make sure that it returns at least 1 batch')
has_len = True
except TypeError:
has_len = False
except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used
has_len = False
if has_len and has_iterable_dataset(dataloader):
rank_zero_warn(
'Your `IterableDataset` has `__len__` defined.'
' In combination with multi-process data loading (when num_workers > 1),'
' `__len__` could be inaccurate if each worker is not configured independently'
' to avoid having duplicate data.'
)
return has_len
def get_len(dataloader: DataLoader) -> Union[int, float]:
""" Return the length of the given DataLoader. If ``__len__`` method is not implemented, return float('inf'). """
if has_len(dataloader):
return len(dataloader)
return float('inf')