lightning/tests
Jirka Borovec 555a6fea21
prune warning & deprecation wrapper (#6540)
* docs

* wrapper

* test

* count

* flake8
2021-03-16 14:55:31 +00:00
..
accelerators deprecate metrics pkg (#6505) 2021-03-15 14:39:38 +00:00
base prune deprecated profiler as bool (#6164) 2021-02-24 09:08:21 +00:00
callbacks Add Trainer.validate(…) method to run one validation epoch (#4948) 2021-03-11 03:46:37 +01:00
checkpointing [bug] Update broadcast + reduce decision ModelCheckpoint] (#6410) 2021-03-14 17:14:27 +00:00
core prune warning & deprecation wrapper (#6540) 2021-03-16 14:55:31 +00:00
deprecated_api prune warning & deprecation wrapper (#6540) 2021-03-16 14:55:31 +00:00
helpers Hotfix for torchvision (#6476) 2021-03-11 16:49:48 +05:30
loggers Improve DummyLogger (#6398) 2021-03-09 23:18:38 +00:00
metrics prune warning & deprecation wrapper (#6540) 2021-03-16 14:55:31 +00:00
models [bug] Update broadcast + reduce decision ModelCheckpoint] (#6410) 2021-03-14 17:14:27 +00:00
overrides Remove no return warning from val/test step (#6139) 2021-03-06 17:15:21 +00:00
plugins deprecate metrics pkg (#6505) 2021-03-15 14:39:38 +00:00
trainer Prune metric: helpers and inputs 3/n (#6547) 2021-03-16 13:54:06 +01:00
tuner Fix tuner.scale_batch_size not finding batch size attribute when using datamodule (#5968) 2021-03-14 09:16:19 +01:00
utilities prune warning & deprecation wrapper (#6540) 2021-03-16 14:55:31 +00:00
README.md Fix pre-commit trailing-whitespace and end-of-file-fixer hooks. (#5387) 2021-01-26 14:27:56 +01:00
__init__.py fix duplicate console logging bug v2 (#6275) 2021-03-02 15:17:55 +05:30
collect_env_details.py add copyright to tests (#5143) 2021-01-05 09:57:37 +01:00
conftest.py PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh [bug] Update broadcast + reduce decision ModelCheckpoint] (#6410) 2021-03-14 17:14:27 +00:00
test_profiler.py Typing for tests 1/n (#6313) 2021-03-09 11:27:15 +00:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4