337 lines
12 KiB
Python
337 lines
12 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from contextlib import redirect_stderr
|
|
from io import StringIO
|
|
from re import escape
|
|
|
|
import pytest
|
|
from torch.utils.data import BatchSampler, DataLoader, DistributedSampler, Sampler, SequentialSampler
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.utilities.data import _update_dataloader
|
|
from pytorch_lightning.utilities.enums import _StrategyType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel, RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
@pytest.mark.parametrize("mode", (1, 2))
|
|
def test_replace_distributed_sampler(tmpdir, mode):
|
|
class IndexedRandomDataset(RandomDataset):
|
|
def __getitem__(self, index):
|
|
return self.data[index]
|
|
|
|
class CustomDataLoader(DataLoader):
|
|
def __init__(self, num_features, dataset, *args, **kwargs):
|
|
# argument `num_features` unused on purpose
|
|
# it gets automatically captured by _replace_dataloader_init_method()
|
|
super().__init__(dataset, *args, **kwargs)
|
|
|
|
class CustomBatchSampler(BatchSampler):
|
|
pass
|
|
|
|
class TestModel(BoringModel):
|
|
def __init__(self, numbers_test_dataloaders, mode):
|
|
super().__init__()
|
|
self._numbers_test_dataloaders = numbers_test_dataloaders
|
|
self._mode = mode
|
|
|
|
def test_step(self, batch, batch_idx, dataloader_idx=0):
|
|
return super().test_step(batch, batch_idx)
|
|
|
|
def on_test_start(self) -> None:
|
|
dataloader = self.trainer.test_dataloaders[0]
|
|
assert isinstance(dataloader, CustomDataLoader)
|
|
batch_sampler = dataloader.batch_sampler
|
|
if self._mode == 1:
|
|
assert isinstance(batch_sampler, CustomBatchSampler)
|
|
# the batch_size is set on the batch sampler
|
|
assert dataloader.batch_size is None
|
|
elif self._mode == 2:
|
|
assert type(batch_sampler) is BatchSampler
|
|
assert dataloader.batch_size == self._mode
|
|
assert batch_sampler.batch_size == self._mode
|
|
assert batch_sampler.drop_last
|
|
# the sampler has been replaced
|
|
assert isinstance(batch_sampler.sampler, DistributedSampler)
|
|
|
|
def create_dataset(self):
|
|
dataset = IndexedRandomDataset(32, 64)
|
|
if self._mode == 1:
|
|
# with a custom batch sampler
|
|
batch_sampler = CustomBatchSampler(SequentialSampler(dataset), batch_size=1, drop_last=True)
|
|
return CustomDataLoader(32, dataset, batch_sampler=batch_sampler)
|
|
elif self._mode == 2:
|
|
# with no batch sampler provided
|
|
return CustomDataLoader(32, dataset, batch_size=2, drop_last=True)
|
|
|
|
def test_dataloader(self):
|
|
return [self.create_dataset()] * self._numbers_test_dataloaders
|
|
|
|
model = TestModel(2, mode)
|
|
model.test_epoch_end = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, limit_test_batches=2, strategy="ddp_find_unused_parameters_false", num_processes=1
|
|
)
|
|
trainer.test(model)
|
|
|
|
|
|
class TestSpawnBoringModel(BoringModel):
|
|
def __init__(self, num_workers):
|
|
super().__init__()
|
|
self.num_workers = num_workers
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 64), num_workers=self.num_workers)
|
|
|
|
def on_pretrain_routine_start(self):
|
|
self._resout = StringIO()
|
|
self.ctx = redirect_stderr(self._resout)
|
|
self.ctx.__enter__()
|
|
|
|
def on_train_end(self):
|
|
def _get_warning_msg():
|
|
dl = self.trainer.train_dataloader.loaders
|
|
if hasattr(dl, "persistent_workers"):
|
|
if self.num_workers == 0:
|
|
warn_str = "Consider setting num_workers>0 and persistent_workers=True"
|
|
else:
|
|
warn_str = "Consider setting persistent_workers=True"
|
|
else:
|
|
warn_str = "Consider setting strategy=ddp"
|
|
|
|
return warn_str
|
|
|
|
if self.trainer.is_global_zero:
|
|
self.ctx.__exit__(None, None, None)
|
|
msg = self._resout.getvalue()
|
|
warn_str = _get_warning_msg()
|
|
assert warn_str in msg
|
|
|
|
|
|
@RunIf(skip_windows=True, skip_49370=True)
|
|
@pytest.mark.parametrize("num_workers", [0, 1])
|
|
def test_dataloader_warnings(tmpdir, num_workers):
|
|
trainer = Trainer(default_root_dir=tmpdir, strategy="ddp_spawn", num_processes=2, fast_dev_run=4)
|
|
assert trainer._accelerator_connector._distrib_type == _StrategyType.DDP_SPAWN
|
|
trainer.fit(TestSpawnBoringModel(num_workers))
|
|
|
|
|
|
def test_update_dataloader_raises():
|
|
with pytest.raises(ValueError, match="needs to subclass `torch.utils.data.DataLoader"):
|
|
_update_dataloader(object(), object(), mode="fit")
|
|
|
|
|
|
def test_dataloaders_with_missing_keyword_arguments():
|
|
ds = RandomDataset(10, 20)
|
|
|
|
class TestDataLoader(DataLoader):
|
|
def __init__(self, dataset):
|
|
super().__init__(dataset)
|
|
|
|
loader = TestDataLoader(ds)
|
|
sampler = SequentialSampler(ds)
|
|
match = escape("missing arguments are ['batch_sampler', 'sampler', 'shuffle']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="fit")
|
|
match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler', 'shuffle']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="predict")
|
|
|
|
class TestDataLoader(DataLoader):
|
|
def __init__(self, dataset, *args, **kwargs):
|
|
super().__init__(dataset)
|
|
|
|
loader = TestDataLoader(ds)
|
|
sampler = SequentialSampler(ds)
|
|
_update_dataloader(loader, sampler, mode="fit")
|
|
_update_dataloader(loader, sampler, mode="predict")
|
|
|
|
class TestDataLoader(DataLoader):
|
|
def __init__(self, *foo, **bar):
|
|
super().__init__(*foo, **bar)
|
|
|
|
loader = TestDataLoader(ds)
|
|
sampler = SequentialSampler(ds)
|
|
_update_dataloader(loader, sampler, mode="fit")
|
|
_update_dataloader(loader, sampler, mode="predict")
|
|
|
|
class TestDataLoader(DataLoader):
|
|
def __init__(self, num_feat, dataset, *args, shuffle=False):
|
|
self.num_feat = num_feat
|
|
super().__init__(dataset)
|
|
|
|
loader = TestDataLoader(1, ds)
|
|
sampler = SequentialSampler(ds)
|
|
match = escape("missing arguments are ['batch_sampler', 'sampler']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="fit")
|
|
match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="predict")
|
|
|
|
class TestDataLoader(DataLoader):
|
|
def __init__(self, num_feat, dataset, **kwargs):
|
|
self.feat_num = num_feat
|
|
super().__init__(dataset)
|
|
|
|
loader = TestDataLoader(1, ds)
|
|
sampler = SequentialSampler(ds)
|
|
match = escape("missing attributes are ['num_feat']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="fit")
|
|
match = escape("missing attributes are ['num_feat']")
|
|
with pytest.raises(MisconfigurationException, match=match):
|
|
_update_dataloader(loader, sampler, mode="predict")
|
|
|
|
|
|
def test_update_dataloader_with_multiprocessing_context():
|
|
"""This test verifies that replace_sampler conserves multiprocessing context."""
|
|
train = RandomDataset(32, 64)
|
|
context = "spawn"
|
|
train = DataLoader(train, batch_size=32, num_workers=2, multiprocessing_context=context, shuffle=True)
|
|
new_data_loader = _update_dataloader(train, SequentialSampler(train.dataset))
|
|
assert new_data_loader.multiprocessing_context == train.multiprocessing_context
|
|
|
|
|
|
def test_dataloader_reinit_for_subclass():
|
|
class CustomDataLoader(DataLoader):
|
|
def __init__(
|
|
self,
|
|
dataset,
|
|
batch_size=1,
|
|
shuffle=False,
|
|
sampler=None,
|
|
batch_sampler=None,
|
|
num_workers=0,
|
|
collate_fn=None,
|
|
pin_memory=False,
|
|
drop_last=False,
|
|
timeout=0,
|
|
worker_init_fn=None,
|
|
dummy_kwarg=None,
|
|
):
|
|
super().__init__(
|
|
dataset,
|
|
batch_size,
|
|
shuffle,
|
|
sampler,
|
|
batch_sampler,
|
|
num_workers,
|
|
collate_fn,
|
|
pin_memory,
|
|
drop_last,
|
|
timeout,
|
|
worker_init_fn,
|
|
)
|
|
self.dummy_kwarg = dummy_kwarg
|
|
self.something_unrelated = 1
|
|
|
|
trainer = Trainer(num_processes=2, strategy="ddp_spawn")
|
|
|
|
class CustomDummyObj:
|
|
sampler = None
|
|
|
|
result = trainer.prepare_dataloader(CustomDummyObj(), shuffle=True)
|
|
assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader"
|
|
|
|
dataset = list(range(10))
|
|
result = trainer.prepare_dataloader(CustomDataLoader(dataset), shuffle=True)
|
|
assert isinstance(result, DataLoader)
|
|
assert isinstance(result, CustomDataLoader)
|
|
assert result.dummy_kwarg is None
|
|
|
|
# Shuffled DataLoader should also work
|
|
result = trainer.prepare_dataloader(CustomDataLoader(dataset, shuffle=True), shuffle=True)
|
|
assert isinstance(result, DataLoader)
|
|
assert isinstance(result, CustomDataLoader)
|
|
assert result.dummy_kwarg is None
|
|
|
|
class CustomSampler(Sampler):
|
|
pass
|
|
|
|
# Should raise an error if existing sampler is being replaced
|
|
dataloader = CustomDataLoader(dataset, sampler=CustomSampler(dataset))
|
|
with pytest.raises(MisconfigurationException, match="will be replaced by `DistributedSampler`"):
|
|
trainer.prepare_dataloader(dataloader, shuffle=True)
|
|
|
|
|
|
class LoaderTestModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
assert len(self.trainer.train_dataloader.loaders) == 10
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
assert len(self.trainer.val_dataloaders[0]) == 10
|
|
return super().validation_step(batch, batch_idx)
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
assert len(self.trainer.test_dataloaders[0]) == 10
|
|
return super().test_step(batch, batch_idx)
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
|
assert len(self.trainer.predict_dataloaders[0]) == 10
|
|
return super().predict_step(batch, batch_idx, dataloader_idx=dataloader_idx)
|
|
|
|
|
|
def test_loader_detaching():
|
|
"""Checks that the loader has been resetted after the entrypoint."""
|
|
|
|
loader = DataLoader(RandomDataset(32, 10), batch_size=1)
|
|
|
|
model = LoaderTestModel()
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert len(model.predict_dataloader()) == 64
|
|
assert len(model.test_dataloader()) == 64
|
|
|
|
trainer = Trainer(fast_dev_run=1)
|
|
trainer.fit(model, loader, loader)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert len(model.predict_dataloader()) == 64
|
|
assert len(model.test_dataloader()) == 64
|
|
|
|
trainer.validate(model, loader)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert len(model.predict_dataloader()) == 64
|
|
assert len(model.test_dataloader()) == 64
|
|
|
|
trainer.predict(model, loader)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert len(model.predict_dataloader()) == 64
|
|
assert len(model.test_dataloader()) == 64
|
|
|
|
trainer.test(model, loader)
|
|
|
|
assert len(model.train_dataloader()) == 64
|
|
assert len(model.val_dataloader()) == 64
|
|
assert len(model.predict_dataloader()) == 64
|
|
assert len(model.test_dataloader()) == 64
|
|
|
|
|
|
def test_pre_made_batches():
|
|
"""Check that loader works with pre-made batches."""
|
|
loader = DataLoader(RandomDataset(32, 10), batch_size=None)
|
|
trainer = Trainer(fast_dev_run=1)
|
|
trainer.predict(LoaderTestModel(), loader)
|