lightning/tests/trainer/connectors/test_checkpoint_connector.py

173 lines
6.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import Mock
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.trainer.states import TrainerFn
from tests.helpers import BoringModel
class HPCHookdedModel(BoringModel):
def __init__(self):
super().__init__()
self.hpc_save_called = 0
self.hpc_load_called = 0
def on_hpc_save(self, checkpoint):
assert "state_dict" in checkpoint
self.hpc_save_called += 1
def on_hpc_load(self, checkpoint):
assert "state_dict" in checkpoint
self.hpc_load_called += 1
def test_hpc_hook_calls(tmpdir):
model = HPCHookdedModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, enable_checkpointing=False, logger=False)
trainer.fit(model)
connector = trainer.checkpoint_connector
connector.hpc_save(tmpdir, logger=Mock())
assert model.hpc_save_called == 1
assert model.hpc_load_called == 0
# new training run, restore from hpc checkpoint file automatically
assert set(os.listdir(tmpdir)) == {"hpc_ckpt_1.ckpt"}
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, enable_checkpointing=False, logger=False)
trainer.fit(model)
assert model.hpc_save_called == 1
assert model.hpc_load_called == 1
def test_preloaded_checkpoint_lifecycle(tmpdir):
"""Tests that the preloaded checkpoint contents gets cleared from memory when it is not required anymore."""
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=1)
trainer.fit(model)
connector = trainer.checkpoint_connector
assert not connector.resume_checkpoint_path
assert not connector._loaded_checkpoint
connector.resume_start()
assert not connector.resume_checkpoint_path
assert not connector._loaded_checkpoint
connector.resume_end()
assert not connector.resume_checkpoint_path
assert not connector._loaded_checkpoint
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer = Trainer(default_root_dir=tmpdir, max_steps=2)
connector = trainer.checkpoint_connector
connector.resume_start(ckpt_path)
assert connector.resume_checkpoint_path == ckpt_path
assert connector._loaded_checkpoint
assert isinstance(connector._loaded_checkpoint, dict)
trainer.state.fn = TrainerFn.FITTING
connector.resume_end()
assert not connector.resume_checkpoint_path
assert not connector._loaded_checkpoint
def test_hpc_restore_attempt(tmpdir):
"""Test that restore() attempts to restore the hpc_ckpt with highest priority."""
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, enable_checkpointing=False, logger=False)
trainer.fit(model)
hpc_ckpt_path = tmpdir / "hpc_ckpt_3.ckpt"
trainer.save_checkpoint(hpc_ckpt_path)
assert os.listdir(tmpdir) == ["hpc_ckpt_3.ckpt"]
# set weights to zero
for param in model.parameters():
torch.nn.init.constant_(param, 0)
# case 1: restore hpc first, no explicit resume path provided
trainer = Trainer(default_root_dir=tmpdir, max_steps=2, enable_checkpointing=False, logger=False)
trainer.fit(model)
for param in model.parameters():
assert param.abs().sum() > 0
torch.nn.init.constant_(param, 0)
# case 2: explicit resume path provided, restore hpc anyway
trainer = Trainer(default_root_dir=tmpdir, max_steps=3)
trainer.fit(model, ckpt_path="not existing")
for param in model.parameters():
assert param.abs().sum() > 0
def test_hpc_max_ckpt_version(tmpdir):
"""Test that the CheckpointConnector is able to find the hpc checkpoint file with the highest version."""
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, max_steps=1)
trainer.fit(model)
trainer.save_checkpoint(tmpdir / "hpc_ckpt.ckpt")
trainer.save_checkpoint(tmpdir / "hpc_ckpt_0.ckpt")
trainer.save_checkpoint(tmpdir / "hpc_ckpt_3.ckpt")
trainer.save_checkpoint(tmpdir / "hpc_ckpt_33.ckpt")
assert trainer.checkpoint_connector.hpc_resume_path == str(tmpdir / "hpc_ckpt_33.ckpt")
assert trainer.checkpoint_connector.max_ckpt_version_in_folder(tmpdir) == 33
assert trainer.checkpoint_connector.max_ckpt_version_in_folder(tmpdir / "not" / "existing") is None
@mock.patch.dict(os.environ, {"PL_FAULT_TOLERANT_TRAINING": "1"})
def test_loops_restore(tmpdir):
"""Test that required loop state_dict is loaded correctly by checkpoint connector."""
model = BoringModel()
checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, save_last=True)
trainer_args = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=1,
logger=False,
callbacks=[checkpoint_callback],
num_sanity_val_steps=0,
)
trainer = Trainer(**trainer_args)
trainer.fit(model)
ckpt_path = str(tmpdir / "last.ckpt")
trainer = Trainer(**trainer_args)
for fn in TrainerFn:
if fn != TrainerFn.TUNING:
trainer_fn = getattr(trainer, f"{fn}_loop")
trainer_fn.load_state_dict = Mock()
for fn in TrainerFn:
if fn != TrainerFn.TUNING:
trainer.state.fn = fn
trainer.checkpoint_connector.resume_start(ckpt_path)
trainer.checkpoint_connector.restore_loops()
trainer_loop = getattr(trainer, f"{fn}_loop")
trainer_loop.load_state_dict.assert_called()
trainer_loop.load_state_dict.reset_mock()
for fn2 in TrainerFn:
if fn2 not in (fn, TrainerFn.TUNING):
trainer_loop2 = getattr(trainer, f"{fn2}_loop")
trainer_loop2.load_state_dict.assert_not_called()